
TELIDA: A Package for Manipulation and Visualization of Timed Linguistic Data

Department for Linguistics, University of Potsdam, Germany

Titus von der Malsburg, Timo Baumann, David Schlangen

 1 class SyntaxInspector(InspectorWidget):

 2 def __init__(self, master, channel, **opts):
 3 InspectorWidget.__init__(self, master, channel, **opts)
 4 self.channel = channel
 5 self.cf = CanvasFrame(parent=self)
 6 self.cf.pack()
 7 self.trees_on_display = []
 8 self.display(channel.latest_events())

 9 def display(self, events):
10 while self.trees_on_display:
11 tw = self.trees_on_display.pop()
12 self.cf.destroy_widget(tw)
13 for event in events:
14 tree = Tree.parse(unicode(event))
15 tw = TreeWidget(self.cf.canvas(), tree, draggable=1)
16 self.cf.add_widget(tw, 10, 10)
17 tw.bind_click_trees(tw.toggle_collapsed)
18 self.trees_on_display.append(tw)

Introduction

TELIDA consists of
 � a light-weight graphical viewer,
 � an accompanying library and
 � command-line tools
to view, process and manage timed linguistic data.

Unlike other tools, TELIDA not only represents interval and point events, in
several tracks, but also hypothesis events, which are the points of creation of
hypotheses about events (and may contain even arbitrary, user-defined data).

TEDview, the viewing component, has some unique features such as
 � a film view that proceeds smoothly during play,
 � ability to process and display incremental data, visualizing the

dynamics of speech processing and interpretation as it happens,
 � ability of online-visualization for speech processing applications

(e.g. spoken dialogue systems), helping to debug and understand
temporal aspects of system behaviour,

 � fine-grained control of visualization for intuitive use.

The accompanying library features
 � easy import from and export to a variety of formats

(Praat (Boersma, 2001), Wavesurfer (Sjölander and Beskow, 2000), XML)
 � object-oriented interface to handling timed linguistic data,

with a broad API suited to process language data
 � handling of incremental and n-best speech processing

results with a focus on evaluation measurements
 � fully documented and thus (fairly) easy to extend
 � written in Perl.

The library-based tools contain
 � simple scripts that capture the most common tasks like adding

or removing alignments, searching in transcription files, etc.
 � scriptable command-line applications that give fast and easy

access to most of the library functions (removing the need to
actually program a script yourself).

The Viewer
Unlike other tools (Wavesurfer, Praat, and others), a track's display changes with
time (represented by a red line) if there are hypothesis events, always displaying
the content of the most recent hypothesis. This makes TEDview ideal to display
and understand the dynamic aspects of language processing, e.g. in dialogue
systems or the ACT-R framework, as processing unfolds.

TEDview is not limited to displaying alignments in tracks, but can be extended to
display all sorts of data in separate inspector widgets through the use of plug-ins.

Additionally, TEDview can be fed data incrementally via TCP, allowing multiple
components to write to it simultaneously and acting as the viewing/debugging
component of multiple agents in a distributed language processing system.

Extending TEDview

 � generic plug-in architecture to
display data of almost any kind.

 � plug-ins are written in Python
� many pre-written widgets

can be used in plug-in writing.
 � plug-ins for parse-trees and

bar-charts are already included
 � As an example, the code for the

parse-tree widget, which makes
use of NLTK's (Bird et al., 2009)
parse drawing ability is shown
to the right.

Bibliography
Timo Baumann, Michaela Atterer, and David Schlangen. 2009. Assessing and Improving the Performance of Speech

Recognition for Incremental Systems. In Proceedings of NAACL-HLT 2009, Boulder, USA.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python. Analyzing Text with the
Natural Language Toolkit. Oreilly & Associates Inc.

Paul Boersma. 2001. Praat, a system for doing phonetics by computer. Glot International, 5(9-10):341-345.

Christoph Müller and Michael strube. 2006. Multi-level annotation of linguistic data with MMAX. In Corpus Technology and
Language Pedagogy: New Resources, New tools, New Methods, pages 197-214. Peter Lang.

Umesh Patil, Marisa Boston, John Hale, Shravan Vasishth, and Reinhold Kliegl. 2009. The interaction of surprisal and
working memory cost during reading. In Proc. of the CUNY sentence processing conference, Davis, USA.

David Schlangen and Raquel Fernández. 2007. Speaking through a noisy channel � experiments on inducing clarification
behaviour in human-human dialogue. In Proceedings of interspeech 2007, Antwerp, Belgium.

Kare Sjölander and Jonas Beskow. 2000. Wavesurfer � an open source speech tool. In Proc. of the Sixth ICSLP, Beijing, China.

Download

TELIDA is open source software and available for download from
http://www.ling.uni-potsdam.de/~timo/code/telida/ .

Further Information

Please contact the authors via e-mail at { malsburg | timo | das }
@ling.uni-potsdam.de . More information on this and related
research is available on the authors' websites where you can also
find a PDF version of this poster.

This work was funded by a DFG grant in the Emmy Noether programme.

Analysis of Dialogue Data

In the DEAWU project (Schlangen and

Fernández, 2007), we combined Praat trans-
criptions and MMAX2 (Müller and Strube, 2006)
annotations in a time-aligned view.

We also encoded numerical values
through color of labels, (e.g. mouse
motion in the mac track above).

Analysis of SDS Performance

In the INPRO project we use TEDview
to analyze and visualize the incremental
hypotheses of several modules of a spoken
dialogue system (Baumann et al., 2009).

This application makes heavy use of
TEDview's incrementality features.

Incremental changes to a track are shown
as diamonds. When playing, the track
display changes as time passes the diamonds.

Analysis of Cognitive Models

In another project, we use TEDview to visualize the output of an
ACT-R (Anderson et al., 2004) simulation of human sentence parsing (Patil et

al., 2009). Different tracks show different aspects of the model over
(simulated) time. Notice the plug-in that incrementally displays
generated parse trees.

