
Assessing and Improving the Performance of

Speech Recognition for Incremental Systems

Timo Baumann, Michaela Atterer, David Schlangen

Institut für Linguistik

Universität Potsdam

Potsdam, Germany

{timo,atterer,das}@ling.uni-potsdam.de

Abstract

In incremental spoken dialogue systems, par-

tial hypotheses about what was said are re-

quired even while the utterance is still ongo-

ing. We define measures for evaluating the

quality of incremental ASR components with

respect to the relative correctness of the par-

tial hypotheses compared to hypotheses that

can optimize over the complete input, the tim-

ing of hypothesis formation relative to the por-

tion of the input they are about, and hypothesis

stability, defined as the number of times they

are revised. We show that simple incremen-

tal post-processing can improve stability dra-

matically, at the cost of timeliness (from 90%

of edits of hypotheses being spurious down to

10% at a lag of 320ms). The measures are

not independent, and we show how system de-

signers can find a desired operating point for

their ASR. To our knowledge, we are the first

to suggest and examine a variety of measures

for assessing incremental ASR and improve

performance on this basis.

1 Introduction

Incrementality, that is, the property of beginning to

process input before it is complete, is often seen as a

desirable property of dialogue systems (e.g., Allen

et al. (2001)), as it allows the system to (a) fold

processing time (of modules such as parsers, or di-

alogue managers) into the time taken by the utter-

ance, and (b) react to partial results, for example by

generating back-channel utterances or speculatively

initiating potentially relevant database queries.

Input to a spoken dialogue system normally

passes an automatic speech recognizer (ASR) as a

first processing module, thus the module’s incre-

mentality determines the level of incrementality that

can be reached by the system as a whole. Using

an ASR system incrementally poses interesting chal-

lenges, however. Typically, ASRs use dynamic pro-

gramming and the maximum likelihood hypothesis

to find the word sequence with the lowest expected

likelihood of the sequence containing errors (sen-

tence error). Due to the dynamic programming ap-

proach, what is considered the best hypothesis about

a given stretch of the input signal can change during

the recognition process, as more right context which

can be used as evidence becomes available.

In this paper, we argue that normally used met-

rics for ASR evaluation such as word error rate must

be complemented with metrics specifically designed

for measuring incremental performance, and offer

some such metrics. We show that there are various

subproperties that are not independent of each other,

and that trade-offs are involved if either of those is

to be optimized. Finally, we propose ways to im-

prove incremental performance (as measured by our

metrics) through the use of smoothing techniques.

To our knowledge, incremental evaluation met-

rics of ASR for incremental systems have not yet

been covered in the literature. Most closely related,

Wachsmuth et al. (1998) show results for an ASR

which fixes its results after a given time ∆ and re-

port the corresponding word error rate (WER). This

unfortunately confounds the incremental and non-

incremental properties of their ASR’s performance.

The remainder of this paper is structured as fol-

lows: In section 2, we give an overview of increme-

nality with respect to ASR, and develop our evalua-

tion metrics. Section 3 describes the setup and data

that we used in our experiments, and reports and dis-

cusses some basic measures for different variants of

the setup. In section 4 we propose and discuss two

orthogonal methods that improve incremental per-

formance: using right context and using message

smoothing, which show different properties with re-

gard to our measures. Finally, in section 5 we sum

up and point to future directions.

2 Incrementality and Evaluation Measures

for Incremental ASR

In a modular system, an incremental module is one

that generates (partial) responses while input is still

ongoing and makes these available to other mod-

ules (Kilger and Finkler, 1995). ASR modules that

use token passing (Young et al., 1989) can easily

be adapted to output a new, live hypothesis after

processing of every input frame (often that is ev-

ery 10ms). In an incremental system we are able

to get partial results from these hypotheses as soon

as they become available – or rather as soon as they

can be trusted. As mentioned above, hypotheses are

only tentative, and may be revised when more right

context becomes available. Modules consuming the

output of an incremental ASR hence must be able

to deal with such revisions. There is a first trade-off

here: Depending on how costly revision is for later

modules (which after all may need to revise any hy-

potheses which they themselves based on the now-

revised input), it may be better to reduce the incre-

mentality a bit – in the sense that partial informa-

tion is produced less often, and hence new words for

example are recognised later – if that buys stability

(fewer revisions). Also, ignoring some incremen-

tal results that are likely to be wrong may increase

system performance. Defining these notions more

precisely is the aim of this section.

2.1 Relative Correctness

We define a hypothesis at time t (hypt) as consist-

ing of a sequence whypt
of words predicted by the

ASR at time t.1 As an example figure 1 shows

1In this paper, we only deal with one-best ASR. We believe

that there are no principled differences when generalising to n-

best hypotheses, but will explore this in detail in future work.

We also abstract away from changes in the hypothesised start

and end times of the words in the sequence. It often happens that

Figure 1: Live ASR hypotheses during incremental

recognition. Edit messages (see section 2.2) are shown

on the right when words are added (⊕) or revoked (⊖).

For the word “zwei” WFC and WFF (see section 2.3) are

shown at the bottom.

a sequence of incrementally produced hypotheses.

(Note that this is an artificial example, showing only

a few illustratory and interesting hypotheses. In a

real recognition system, the hypothesis frequency is

of course much higher, with much repetition of sim-

ilar hypotheses at consecutive frames.)

The question now is how we can evaluate the

quality of a hypothesis at the time t it is produced.

It is reasonable to only expect this hypothesis to say

something (correct or not) about the input up to time

t – unless we want the ASR to predict, in which case

we want it to make assumptions about times beyond

t (see section 4.1). There are two candidates for the

yardstick against which the partial hypotheses could

be compared: First, one could take the actually spo-

ken words, computing measures such as word error

rate. The other option, which is the one taken here,

is to take as the gold standard the final hypothesis

produced by the ASR when it has all evidence avail-

the ASR’s assumptions about the position of the word bound-

aries change, even if the word sequence stays constant. If, as we

assume here, later modules do not use this timing information,

we can consider two hypotheses that only differ in boundary

placement as identical.

able (i.e., when the utterance is complete). This is

more meaningful for our purpose, as it relates the in-

formativity of the partial hypothesis to what can be

expected if the ASR can do all its internal optimisa-

tions, and not to the factually correct sequence that

the ASR might not be able to recognise even with

all information present. This latter problem is al-

ready captured in the conventional non-incremental

performance measures.

In our metrics in this paper, we hence take as gold

standard (wgold) the final, non-incremental hypothe-

sis of the ASR (which, to reiterate this point, might

be factually incorrect, that is, might contain word

errors). We define a module’s incremental response

at time t (whypt
) as relatively correct (r-correct), iff

it is equal to the non-incremental hypothesis up to

time t: whypt t
= wgoldt

. Hence, in figure 1 above,

hypotheses 1, 2, 6, 7, 9 and 12 are r-correct.2 We

call the normalised rate of r-correct responses of a

module its (average) r-correctness.

As defined above, the criterion for r-correctness

is still pretty strict, as it demands of the ASR that

words on the right edge are recognised even from

the first frame on. For example, whyp10
in figure 1

is not r-correct, because wgold10
(that part of wgold

that ends where whyp10
ends) already spans parts of

the word “drei” which has not yet been picked up

by the incremental recognition. A relaxed notion

of correctness hence is prefix-correctness, which re-

quires only that whypt
be a prefix of wgoldt

. (Hy-

potheses 3 and 10 in figure 1 are p-correct, as are all

r-correct hypotheses.) It should be noted though that

p-correctness is too forgiving to be used directly as

an optimization target: in the example in figure 1,

a module that only ever produces empty hypotheses

would trivally achieve perfect p-correctness (as this

is always a prefix of wgold).

2.2 Edit Overhead

The measures defined so far capture only static as-

pects of the incremental performance of a module

and do not say anything about the dynamics of the

recognition process. To capture this, we look at

the changes between subsequent partial hypotheses.

There are three ways in which an hypothesis hypt+1

2The timing in hypothesis 7 is not correct – but this does not

matter to our notion of correctness (see footnote 1).

can be different from hypt: there can be an extension

of the word sequence, a revokation, or a revision of

the last words in the sequence.3 These differences

can be expressed as edit messages, where extending

a sequence by one word would require an add mes-

sage (⊕), deleting the last word in the sequence a

revoke message (⊖), and exchange of the last word

would require two messages, one to revoke the old

and one to add the new word.4

Now, an incrementally perfect ASR would only

generate extensions, adding new words at the right

edge; thus, there would be exactly as many edit mes-

sages as there are words in wgold. In reality, there

are typically many more changes, and hence many

spurious edits (see below for characteristic rates in

our data). We call the rate of spurious edits the edit

overhead (EO). For figure 1 above, this is 8

11
: There

are 11 edits (as shown in the figure), while we’d ex-

pect only 3 (one ⊕ for each word in the final result).

Hence, 8 edits are spurious.

This measure corresponds directly to the amount

of unnecessary activity a consumer of the ASR’s

output performs when it reacts swiftly to words that

may be revoked later on. If the consumer is able to

robustly cope with parallel hypotheses (for example

by building a lattice-like structure), a high EO may

not be problematic, but if revisions are costly for

later modules (or even impossible because action has

already been taken), we would like EO to be as low

as possible. This can be achieved by not sending edit

messages unconditionally as soon as words change

in the ASR’s current hypothesis, using strategies as

outlined in section 4. Obviously, deferring or sup-

pressing messages results in delays, a topic to which

we turn in the following section, where we define

measures for the response time of ASR.

2.3 Timing Measures

So far, our measures capture characteristics about

the complete recognition process. We now turn to

the timing of the recognition of individual words.

For this, we again take the output of the ASR when

all signal is present (i.e., wgold) as the basis. There

3As fourth and most frequent alternative, consecutive hy-

potheses do not change at all.
4Revision could also be seen as a third atomic operation,

as in standard ASR evaluation (then called “substitution”). To

keep things simple, we only regard two atomic operations.

are two things we may be interested in. First, we

may want to know when is the first time that a certain

word appears in the correct position in the sequence

(or equivalently, when its first correct add edit mes-

sage is sent), expressed in relation to its boundaries

in wgold. We measure this event, the first time that

the ASR was right about a word, relative to its gold

beginning. We call the measure word first correct

response (WFC). As a concrete example take hyp7

in figure 1. At this point, the word “zwei” is first hy-

pothesised. Compared to the beginning of the word

in wgold, this point (t7) has a delay of 1 frame (the

frames are illustrated by the dashed lines).

As explained above, it may very well be the

case that for a brief while another hypothesis, not

r-correct w.r.t. wgold, may be favoured (cf. the word

“zwar” in the example in the figure). Another mea-

sure we hence might also be interested in is when our

word hypothesis starts remaining stable or, in other

words, becomes final. We measure this event rela-

tive to the end of the word in the gold standard. We

call it word first final response (WFF). In our exam-

ple, again for “zwei”, this is t9, which has a distance

of 0 to the right boundary of the word in wgold.

In principle, we could use both anchor points (the

left vs. the right edge of a word) for either measure

or use a word-relative scale, but for simplicity’s sake

we restrict ourselves to one anchor point each.

Under normal conditions, we expect WFC to be

positive. The better the incremental ASR, the closer

to 0 it will be. WFC is not a measure we can eas-

ily optimize. We would either have to enumerate

the whole language model or use external non-ASR

knowledge to predict continuations of the word se-

quence before the word in question has started. This

would increase EO. In principle, we are rather in-

terested in accepting an increase in WFC, when we

delay messages in order to decrease EO.

WFF however, can reach values below 0. It

converges towards the negative average of word

length as an incremental ASR improves. For non-

incremental ASR it would be positive: the average

distance beween the sentence end and word end.

WFF is a measure we can strive to reduce by sending

fewer (especially fewer wrong) messages.

Another property we might be interested in opti-

mizing is the time it takes from the first correct hy-

pothesis to stabilize to a final hypothesis. We com-

pute this correction time as the difference in time

between WFF and WFC.5 A correction time of 0 in-

dicates that there was no correction, i.e. the ASRwas

immediately correct about a word, something which

we would like to happen as often as possible.

Note that these are measures for each word in

each processed utterance, and we will use distribu-

tional parameters of these timing measures (means

and standard deviations) as metrics for the perfor-

mance of the incremental setups described later.

2.4 Summary of Measures

In this section, we first described measures that eval-

uate the overall correctness of incrementally pro-

duced ASR hypotheses, not taking into account their

sequential nature. We then turned to the dynamics of

how the current hypothesis evolves in a way which

we consider important for a consumer of incremen-

tal ASR, namely the overhead that results from edits

to the hypothesis. Finally, we looked at the timing

of individual messages with regard to first correct

(potentially unstable) occurrence (WFC) and stabil-

ity (WFF). In the next section, we use the measures

defined here to characterize the incremental perfor-

mance of our ASR, before we discuss ways to im-

prove incremental performance in section 4.

3 Setup, Corpora and Base Measurements

We use the large-vocabulary continuous-speech

recognition framework Sphinx-4 (Walker et al.,

2004) for our experiments, using the built-in Lex-

Tree decoder, extended by us to provide incremen-

tal results. We built acoustic models for German,

based on a small corpus of spontaneous instructions

in a puzzle building domain,6 and the Kiel corpus

of read speech (IPDS, 1994). We use a trigram lan-

guage model that is based on the puzzle domain tran-

scriptions. As test data we use 85 recordings of two

speakers (unknown to the acoustic model) that speak

sentences similar to those in the puzzle domain.

We do not yet use recognition rescoring to opti-

mize for word error rate, but just the ASR’s best

hypotheses which optimize for low sentence error.

Incremental rescoring mechanisms such as that of

5In figure 1, the correction time for “zwei” is 9 − 7 = 2.
6Available from http://www.voxforge.org/

home/downloads/speech/

SER (non-incremental) 68.2%

WER (non-incremental) 18.8%

r-correct (cropped) 30.9%

p-correct (cropped) 53.1%

edit overhead 90.5%

mean word duration 0.378 s

WFC: mean, stddev, median 0.276 s, 0.186 s, 0.230 s

WFF: mean, stddev, median 0.004 s, 0.268 s, –0.06 s

immediately correct 58.6%

Table 1: Base measurements on our data

Razik et al. (2008) to optimize ASR performance are

orthogonal to the approaches presented in section 4

and could well be incorporated to further improve

incremental performance.

The individual recordings in our corpus are fairly

short (5.5 seconds on average) and include a bit of si-

lence at the beginning and end. Obviously, recogniz-

ing silence is much easier than recognizing words.

To make our results more meaningful for continuous

speech, we crop away all ASR hypotheses from be-

fore and after the active recognition process.7 While

this reduces our performance in terms of correctness

(we crop away areas with nearly 100% correctness),

it has no impact on the edit overhead, as the number

of changes in wcurr remains unchanged, and also no

impact on the timing measures as all word bound-

aries remain the same.

3.1 Base Measurements

Table 1 characterises our ASR module (on our data)

in terms of the metrics defined in section 2. Addi-

tionally we state sentence error rate, as the rate of

sentences that contain at least one error, and word

error rate computed in the usual way, as well as

the mean duration of words in our corpus (as non-

incrementally measured for our ASR).

We see that correctness is quite low. This is

mostly due to the jitter that the evolving current hy-

pothesis shows in its last few frames, jumping back

and forth between highly-ranked alternatives. Also,

our ASR only predicts words once there is acoustic

evidence for several phonemes and every phoneme

(being modelled by 3 HMM states) must have a du-

ration of at least 3 frames. Thus, some errors rela-

tive to the final hypothesis occur because the ASR

7In figure 1, hypotheses 1, 2 and 3 would be cropped away.

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2

p
e

rc
e

n
ta

g
e

 o
f

w
o

rd
s
 t

h
a

t
a

re
 f

in
a

l

correction time in s

Figure 2: Distribution of correction times (WFF−WFC).

only hypothesizes about words once they already

have a certain duration (and hence preceding hy-

potheses are not r-correct). The difference between

r-correctness and p-correctness (20% in our case)

may be largely attributed to this fact.

The edit overhead of 90.5% means that for ev-

ery neccessary add message, there are nine superflu-

ous (add or revoke) messages. Thus, a consumer of

the ASR output would have to recompute its results

ten times on average. In an incremental system, this

consumer might itself output messages and further

revise decisions as information from other modules

becomes available, leading to a tremendous amount

of changes in the system state. As ASR is the first

module in an incremental spoken dialogue system,

reducing the edit overhead is essential for overall

system performance.

On average, the correct hypothesis about a word

becomes available 276ms after the word has started

(WFC). With a mean word duration of 378ms

this means that information becomes available af-

ter roughly 3
4
of the word have been spoken. No-

tice though that the median is somewhat lower than

the mean, implying that this time is lower for most

words and much higher for some words. In fact, the

maximum for WFC in our data is 1.38 s.

On average, a word becomes final (i.e. is

not changed anymore) when it has ended

(mean(WFF) = 0.004). Again, the median is

lower, indicating the unnormal distribution of WFF

(more often lower, sometimes much higher).

Of all words, 58.6% were immediately correctly

 0

 20

 40

 60

 80

 100

2 5 8 11

LM weight

R-Correctness
P-Correctness
Edit Overhead

WER

Figure 3: Correctness, Edit Overhead and Word Error

Rate (WER) with varied language model weight and un-

altered audio.

hypothesized by the ASR. Figure 2 plots the per-

centage of words with correction times equal to or

lower than the time on the x-axis. While this starts

at the initial 58.6% of words that were immediately

correct, it rises above 90% for a correction time of

320ms and above 95% for 550ms. Inversely this

means that we can be certain to 90% (or 95%) that

a current correct hypothesis about a word will not

change anymore once it has not been revoked for

320ms (or 550ms respectively).

Knowing (or assuming with some certainty) that

a hypothesis is final allows us, to commit ourselves

to this hypothesis. This allows for reduced compu-

tational overhead (as alternative hypotheses can be

abandoned) and is crucial if action is to be taken that

cannot be revoked later on (as for example, initiat-

ing a response from the dialogue system). Figure 2

allows us to choose an operating point for commit-

ment with respect to hypothesis age and certainty.

3.2 Variations of the Setup

In setting up our system we did not yet strive for best

(non-incremental) performance; this would have re-

quired much more training material and parameter

tweaking. We were more interested here in explor-

ing general questions related to incremental ASR,

and in developing approaches to improve incremen-

tal performance (see section 4), which we see as a

problem that is independent from that of improving

performance measures like (overall) accuracy.

To test how independent our measures are on de-

 0

 20

 40

 60

 80

 100

orig -20 -15 -10 -5 0

signal to noise ratio in dB

R-Correctness
P-Correctness
Edit Overhead

WER

Figure 4: Correctness, Edit Overhead and Word Error

Rate (WER) with additive noise (LM weight set to 8).

tails of the specific setting, such as quality of the

audio material and of the language model, we var-

ied these factors systematically, by adding white

noise to the audio and changing the language model

weight relative to the acoustic model. We varied the

noise to produce signal to noise ratios ranging from

hardly audible (−20 dB), through annoying noise

(−10 dB) to barely understandable audio (0 dB).

Figure 3 gives an overview of the ASR-

performance with different LM weights and figure 4

with degraded audio signals. Overall, we see that

r-correctness and EO change little with different

LM and AM performance and correspondigly de-

graded WER. A tendency can be seen that larger LM

weights result in higher correctness and lower EO. A

larger LM weight leads to less influence of acoustic

events which dynamically change hypotheses, while

the static knowledge from the LM becomes more

important. Surprisingly, WER improved with the

addition of slight noise, which we assume is due to

differences in recording conditions between our test

data and the training data of the acoustic model.

In the following experiments as well as in the data

in table 1 above, we use a language model weight of

8 and unaltered audio.

4 Improving Incremental Performance

In the previous section we have shown how a stan-

dard ASR that incrementally outputs partial hy-

potheses after each frame processed performs with

regard to our measures and showed that they remain

stable in different acoustic conditions and with dif-

fering LM weights. We now discuss ways of incre-

mentally post-processing ASR hypotheses in order

to improve selected measures.

We particularly look for ways to improve EO;

that is, we want to reduce the amount of wrong hy-

potheses and resulting spurious edits that deterio-

rate later modules’ performance, while still being as

quick as possible with passing on relevant hypothe-

ses. We are less concerned with correctness mea-

sures, as they do not capture well the dynamic evo-

lution, which is important for further processing of

the incremental hypothesis. We also discuss trade-

offs that are involved in the optimization decisions.

4.1 Right Context

Allowing the use of some right context is a com-

mon strategy to cope with incremental data. For

example, our ASR already uses this strategy (with

very short right contexts) internally at word bound-

aries to restrict the language model hypotheses to

an acoustically plausible subset (Ortmanns and Ney,

2000). In the experiment described here, we allow

the ASR a larger right context of size ∆ by taking

into account at time t the output of the ASR up to

time t − ∆ only. That is, what the ASR hypothe-

sizes about the interval]t − ∆, t] is considered to

be too immature and is discarded, and the hypothe-

ses about the input up to t − ∆ have the benefit of a

lookahead up to t. This reduces jitter, which is found

mostly to the very right of the incremental hypothe-

ses. Thus, we expect to reduce the edit overhead in

proportion with ∆. On the other hand, allowing the

use of a right context leads to the current hypothe-

sis lagging behind the gold standard. Correspond-

ingly, WFC increases by ∆. Obviously, using only

information up to t − ∆ has averse effects on cor-

rectness as well, as this measure evaluates the word

sequences up to wgoldt
which may already contain

more words (those recognised in]t − ∆, t]). Thus,
to be more fair and to account for the lag when mea-

suring the module’s correctness, we additionally de-

fine fair r-correctness which restricts the evaluation

up to time t − ∆: whyptt−∆
= wgoldt−∆

.

Figure 5 details the results for our data with right

context between 1.5 s and −0.2 s. (The x-axis plots

∆ as negative values, with 0 being “now”. Results

for a right context (∆) of 1.2 can thus be found 1.2 to

 0

 20

 40

 60

 80

 100

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

right context in s (scale shows larger right contexts towards the left)

(strict) R-Correctness
fair R-Correctness

P-Correctness
Edit Overhead

WER

Figure 5: Correctness (see text), Edit Overhead and

fixed-WER for varying right contexts ∆.

the left of 0, at −1.2.) We see that at least in the fair

measure, fixed lag performs quite well at improving

both the module’s correctness and EO. This is due

to the fact that ASR hypotheses become more and

more stable when given more right context. Still,

even for fairly long lags, many late edits still occur.

To illustrate the effects of a system that does not

support edits of hypotheses, but instead commits

right away, we plot WER that would be reached by a

system that always commits after a right context of

∆. As can be seen in the figure, the WER remains

higher than the non-incremental WER (18.8%) even

for fairly large right contexts. Also, the WER plot by

Wachsmuth et al. (1998) looks very similar to ours

and likewise shows a sweet spot suitable as an oper-

ating point with a right context of about 800ms.

As expected, the analysis of timing measures

shows an increase with larger right contexts with

their mean values quickly approaching ∆ (or

∆−meanword duration for WFF), which are the

lower bounds when using right context. Correspond-

ingly, the percentage of immediately correct hy-

potheses increases with right context reaching 90%

for ∆ = 580ms and 98% for ∆ = 1060ms.

Finally, we can extend the concept of right con-

text into negative values, predicting the future, as it

were. By choosing a negative right context, in which

we extrapolate the last hypothesis state by ∆ into the

future, we can measure the correctness of our hy-

potheses correctly predicting the close future, which

is always the case when the current word is still be-

ing spoken. The graph shows that 15% of our hy-

potheses will still be correct 100ms in the future and

10% will still be correct for 170ms. Unfortunately,

there is little way to tell apart hypotheses that will

survive and those which will soon be revised.

4.2 Message Smoothing

In the previous section we reduced wrong edit mes-

sages by avoiding most of the recognition jitter by

allowing the ASR a right context of size ∆, which

directly hurt timing measures by roughly the same

amount. In this section, we look at the sequence of

partial hypotheses from the incremental ASR, using

the dynamic properties as cues. We accomplish this

by looking at the edit messages relative to the cur-

rently output word sequence. But instead of sending

them to a consumer directly (updating the external

word sequence), we require that an edit message be

the result of N consecutive hypotheses. To illustrate

the process with N = 2 we return to figure 1. None

of the words “an”, “ein” or “zwar” would ever be

output, because they are only present for one time-

interval each. Edit messages would be sent at the

following times: ⊕(eins) at t7, ⊕(zwei) at t10 (only
then is “zwei” the result of two consecutive hypothe-

ses) and ⊕(drei) at t13. While no words are revoked

in the example, this still occurs when a revocation is

consecutively hypothesized for N frames.

We get controversial results for this strategy, as

can be seen in figure 6: The edit overhead falls

rapidly, reaching 50% (for each message necessary,

there is one superfluous message) with only 110ms

(and correspondingly increasing WFC by the same

time) and 10% with 320ms. The same thresh-

olds are reached through the use of right context at

530ms and 1150ms respectively as shown in fig-

ure 5. Likewise, the prefix correctness improve-

ments are better than with using right context, but

the r-correctness is poor, even under the “fair” mea-

sure. We believe this is due to correct hypotheses

being held back too long due to the hypothesis se-

quence being interspersed with wrong hypotheses

(which only last for few consecutive hypotheses)

which reset the counter until the add message (for

the prevalent and potentially correct word) is sent.8

8This could be resolved by using some kind of majority

smoothing instead of requiring a message to be the result of all

consecutive hypotheses. We will investigate this in future work.

 0

 20

 40

 60

 80

 100

-1 -0.8 -0.6 -0.4 -0.2 0

smoothing in s (scale shows larger smoothings towards the left)

(strict) R-Correctness
fair R-Correctness

P-Correctness
Edit Overhead

Figure 6: Correctness and Edit Overhead for varying

smoothing lengths.

5 Conclusions and Further Directions

We have presented the problem of speech recogni-

tion for incremental systems, outlined requirements

for incremental speech recognition and showed mea-

sures that capture how well an incremental ASR per-

forms with regard to these measures. We discussed

the measures and their implications in detail with

our baseline system and showed that the incremen-

tal measures remain stable regardless of the specific

ASR setting used.

Finally, we presented ways for the online post-

processing of incremental results, looking for ways

to improve some of the measures defined, while

hurting the other measures as little as possible.

Specifically, we were interested in generating less

wrong hypotheses at the cost of possible short de-

lays. While using right context shows improvements

with larger delays, using message smoothing seems

especially useful for fast processing. We think these

two approaches could be combined to good effect.

Together with more elaborate confidence handling a

system could quickly generate hypotheses and then

refine the associated confidences over time. We will

explore this in future work.

Acknowledgments

This work was funded by a DFG grant in the Emmy

Noether programme. We wish to thank the anony-

mous reviewers for helpful comments.

References

James Allen, George Ferguson, and Amanda Stent. 2001.

An architecture for more realistic conversational sys-

tems. In Proceedings of the Conference on Intelligent

User Interfaces, Santa Fe, USA.

IPDS. 1994. The Kiel Corpus of Read Speech. CD-

ROM.

Anne Kilger and Wolfgang Finkler. 1995. Incremental

generation for real-time applications. Technical Re-

port RR-95-11, DFKI, Saarbrücken, Germany.

Stefan Ortmanns and Hermann Ney. 2000. Look-ahead

techniques for fast beam search. Computer Speech &

Language, 14:15–32.

Joseph Razik, Odile Mella, Dominique Fohr, and Jean-

Paul Haton. 2008. Frame-Synchronous and Local

ConfidenceMeasures for on-the-fly Automatic Speech

Recognition. In Proceedings of Interspeech 2008.

Sven Wachsmuth, Gernot A. Fink, and Gerhard Sagerer.

1998. Integration of parsing and incremental speech

recognition. In Proceedings of the European Sig-

nal Processing Conference, volume 1, pages 371–375,

Rhodes, Greece.

Willi Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,

Rita Singh, Evandro Gouvea, Peter Wolf, and Joe

Woelfel. 2004. Sphinx-4: A flexible open source

framework for speech recognition. Technical Report

SMLI TR2004-0811, Sun Microsystems Inc.

Steve Young, NH Russell, and JHS Thornton. 1989. To-

ken passing: a simple conceptual model for connected

speech recognition systems. Cambridge University

Engineering Department Technical Report CUED/F-

INFENG/TR, 38.

