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Abstract
Incremental natural language understand-
ing is the task of assigning semantic rep-
resentations to successively larger prefixes
of utterances. We compare two types of
statistical models for this task: a) local
models, which predict a single class for
an input; and b), sequential models, which
align a sequence of classes to a sequence
of input tokens. We show that, with some
modifications, the first type of model can
be improved and made to approximate the
output of the second, even though the lat-
ter is more informative. We show on two
different data sets that both types of model
achieve comparable performance (signifi-
cantly better than a baseline), with the first
type requiring simpler training data. Re-
sults for the first type of model have been
reported in the literature; we show that for
our kind of data our more sophisticated
variant of the model performs better.

1 Introduction

Imagine being at a dinner, when your friend Bert
says “My friend, can you pass me the salt over
there, please?”. It is quite likely that you get the
idea that something is wanted of you fairly early
into the utterance, and understand what exactly it
is that is wanted even before the utterance is over.

This is possible only because you form an un-
derstanding of the meaning of the utterance even
before it is complete; an understanding which
you refine—and possibly revise—as the utterance
goes on. You understand the utterance incremen-
tally. This is something that is out of reach for
most current dialogue systems, which process ut-
terances non-incrementally, en bloc (cf. (Skantze
and Schlangen, 2009), inter alia).

Enabling incremental processing in dialogue
systems poses many challenges (Allen et al.,

2001; Schlangen and Skantze, 2009); we focus
here on the sub-problem of modelling incremental
understanding—a precondition for enabling truly
interactive behaviour. More specifically, we look
at statistical methods for learning mappings be-
tween (possibly partial) utterances and meaning
representations. We distinguish between two types
of understanding, which were sketched in the first
paragraph above: a) forming a partial understand-
ing, and b) predicting a complete understanding.

Recently, some results have been published on
b), predicting utterance meanings, (Sagae et al.,
2009; Schlangen et al., 2009). We investigate
here how well this predictive approach works in
two other domains, and how a simple extension of
techniques (ensembles of slot-specific classifiers
vs. one frame-specific one) can improve perfor-
mance. To our knowledge, task a), computing par-
tial meanings, has so far only been tackled with
symbolic methods (e.g., (Milward and Cooper,
1994; Aist et al., 2006; Atterer and Schlangen,
2009));1 we present here some first results on ap-
proaching it with statistical models.

Plan of the paper: First, we discuss relevant pre-
vious work. We then define the task of incremental
natural language understanding and its two vari-
ants in more detail, also looking at how models
can be evaluated. Finally, we present and discuss
the results of our experiments, and close with a
conclusion and some discussion of future work.

2 Related Work
Statistical natural language understanding is an ac-
tive research area, and many sophisticated mod-
els for this task have recently been published, be
that generative models (e.g., in (He and Young,
2005)), which learn a joint distribution over in-

1We explicitly refer to computation of incremental inter-
pretations here; there is of course a large body of work on
statistical incremental parsing (e.g., (Stolcke, 1995; Roark,
2001)).



(Mairesse et al., 2009) 94.50
(He and Young, 2005) 90.3

(Zettlemoyer and Collins, 2007) 95.9
(Meza et al., 2008) 91.56

Table 1: Recent published f-scores for non-
incremental statistical NLU, on the ATIS corpus

put, output and possibly hidden variables; or, more
recently, discriminative models (e.g., (Mairesse et
al., 2009)) that directly learn a mapping between
input and output. Much of this work uses the ATIS
corpus (Dahl et al., 1994) as data and hence is di-
rectly comparable. In Table 1, we list the results
achieved by this work; we will later situate our re-
sults relative to this.

That work, however, only looks at mappings be-
tween complete utterances and semantic represen-
tations, whereas we are interested in the process of
mapping semantic representations to successively
larger utterance fragments. More closely related
then is (Sagae et al., 2009; DeVault et al., 2009),
where a maximum entropy model is trained for
mapping utterance fragments to semantic frames.
(Sagae et al., 2009) make the observation that of-
ten the quality of the prediction does not increase
anymore towards the end of the utterance; that is,
the meaning of the utterance can be predicted be-
fore it is complete.

In (Schlangen et al., 2009), we presented a
model that predicts incrementally a specific as-
pect of the meaning of a certain type of utterance,
namely the intended referent of a referring expres-
sion; the similarity here is that the output is of the
same type regardless of whether the input utter-
ance is complete or not.

(DeVault et al., 2009) discuss how such ‘mind
reading’ can be used interactionally in a dialogue
system, e.g. for completing the user’s utterance
as an indication of the system’s grounding state.
While these are interesting uses, the approach is
somewhat limited by the fact that it is incremental
only on the input side, while the output does not
reflect how ‘complete’ (or not) the input is. We
will compare this kind of incremental processing
in the next section with one where the output is
incremental as well, and we will then present re-
sults from our own experiments with both kinds of
incrementality in statistical NLU.

3 Task, Evaluation, and Data Sets
3.1 The Task
We have said that the task of incremental natural
language understanding consists in the assignment

of semantic representations to progressively more
complete prefixes of utterances. This description
can be specified along several aspects, and this
yields different versions of the task, appropriate
for different uses. One question is what the as-
signed representations are, the other is what ex-
actly they are assigned to. We investigate these
questions here abstractly, before we discuss the in-
stantiations in the next sections.

Let’s start by looking at the types of representa-
tions that are typically assigned to full utterances.
A type often used in dialogue systems is the frame,
an attribute value matrix. (The attributes are here
typically called slots.) These frames are normally
typed, that is, there are restrictions on which slots
can (and must) occur together in one frame. The
frames are normally assigned to the utterance as a
whole and not to individual words.

In an incremental setting, where the input
potentially consists of an incomplete utterance,
choosing this type of representation and style of
assignment turns the task into one of prediction of
the utterance meaning. What we want our model
to deliver is a guess of what the meaning of the ut-
terance is going to be, even if we have only seen
a prefix of the utterance so far; we will call this
“whole-frame output” below.2

Another popular representation of semantics in
applied systems uses semantic tags, i.e., markers
of semantic role that are attached to individual
parts of the utterance. Such a style of assignment
is inherently ‘more incremental’, as it provides a
way to assign meanings that represent only what
has indeed been said so far, and does not make as-
sumptions about what will be said. The semantic
representation of the prefix simply contains all and
only the tags assigned to the words in the prefix;
this will be called “aligned output” below. To our
knowledge, the potential of this type of represen-
tation (and the models that create them) for incre-
mental processing has not yet been explored; we
present our first results below.

Finally, there is a hybrid form of representation
and assignment. If we allow the output frames to
‘grow’ as more input comes in (hence possibly vi-
olating the typing of the frames as they are ex-
pected for full utterances), we get a form of rep-
resentation with a notion of ‘partial semantics’ (as

2In (Schlangen and Skantze, 2009), this type of incremen-
tal processing is called “input incremental”, as only the input
is incrementally enriched, while the output is always of the
same type (but may increase in quality).



only that is represented for which there is evidence
in what has already been seen), but without direct
association of parts of the representation and parts
of the utterance or utterance prefix.

3.2 Evaluation
Whole-Frame Output A straightforward met-
ric is Correctness, which can take the values 1
(output is exactly as expected) or 0 (output is not
exactly as expected). Processing a test corpus in
this way, we get one number for each utterance
prefix, and, averaging this number, one measure-
ment for the whole corpus.

This can give us a first indication of the gen-
eral quality of the model, but because it weighs
the results for prefixes of all lengths equally, it
cannot tell us much about how well the incremen-
tal processing worked. In actual applications, we
presumably do not expect the model to be correct
from the very first word on, but do expect it to get
better the longer the available utterance prefix be-
comes. To capture this, we define two more met-
rics: first occurrence (FO), as the position (relative
to the eventual length of the full utterance) where
the response was correct first; and final decision
(FD) as the position from which on the response
stayed correct (which consequently can only be
measured if indeed the response stays correct).3

The difference between FO and FD then tells us
something about the stability of hypotheses of the
model.

In some applications, we may indeed only be
able to do further processing with fully correct—
or at least correctly typed—frames; in which case
correctness and FO/FD on frames are appropriate
metrics. However, sometimes even frames that are
only partially correct can be of use, for example if
specific system reactions can be tied to individual
slots. To give us more insight about the quality of a
model in such cases, we need a metric that is finer-
grained than binary correctness. Following (Sagae
et al., 2009), we can conceptualise our task as one
of retrieval of slot/value pairs, and use precision
and recall (and, as their combination, f-score) as
metrics. As we will see, it will be informative to
plot the development of this score over the course
of processing the utterance.

For these kinds of evaluations, we need as a
gold standard only one annotation per utterance,

3These metrics of course can only be computed post-hoc,
as during processing we do not know how long the utterance
is going to be.

namely the final frame.

Aligned Output As sequence alignments have
more structure—there is a linear order between the
tags, and there is exactly one tag per input token—
correctness is a more fine-grained, and hence more
informative, metric here; we define it as the pro-
portion of tags that are correct in a sequence. We
can also use precision and recall here, looking at
each position in the sequence individually: Has
the tag been recalled (true positive), or has some-
thing else been predicted instead (false negative,
and false positive)? Lastly, we can also recon-
struct frames from the tag sequences, where se-
quences of the same tag are interpreted as seg-
menting off the slot value. (And hence, what was
several points for being right or wrong, one for
each tag, becomes one, being either the correct
slot value or not. We will discuss these differences
when we show evaluations of aligned output.)

For this type of evaluation, we need gold-
standard information of the same kind, that is, we
need aligned tag sequences. This information is
potentially more costly to create than the one fi-
nal semantic representation needed for the whole-
frame setting.

Hybrid Output As we will see below, the hy-
brid form of output (‘growing’ frames) is pro-
duced by ensembles of local classifiers, with one
classifier for each possible slot. How this output
can be evaluated depends on what type of informa-
tion is available. If we only have the final frame,
we can calculate f-score (in the hope that preci-
sion will be better than for the whole-frame clas-
sifier, as such a classifier ensemble can focus on
predicting slots/value pairs for which there is di-
rect evidence); if we do have sequence informa-
tion, we can convert it to growing frames and eval-
uate against that.

3.3 The Data Sets
ATIS As our first dataset, we use the ATIS air
travel information data (Dahl et al., 1994), as pre-
processed by (Meza et al., 2008) and (He and
Young, 2005). That is, we have available for each
utterance a semantic frame as in (1), and also a
tag sequence that aligns semantic concepts (same
as the slot names) and words. One feature to note
here about the ATIS representations is that the slot
values / semantic atoms are just the words in the
utterance. That is, the word itself is its own se-
mantic representation, and no additional abstrac-



tion is performed. In this domain, this is likely un-
problematic, as there aren’t many different ways
(that are to be expected in this domain) to refer to
a given city or a day of the week, for example.

(1) “What flights are there arriving in Chicago after

11pm?”
GOAL = FLIGHT
TOLOC.CITY NAME = Chicago
ARRIVE TIME.TIME RELATIVE = after
ARRIVE TIME.TIME = 11pm


In our experiments, we use the ATIS training
set which contains 4481 utterances, between 1
and 46 words in length (average 11.46; sd 4.34).
The vocabulary consists of 897 distinct words.
There are 3159 distinct frames, 2594 (or 58% of
all frames) of which occur only once. Which of
the 96 possible slots occur in a given frame is
distributed very unevenly; there are some very
frequent slots (like FROMLOC.CITYNAME
or DEPART DATE.DAY NAME) and
some very rare or even unique ones (e.g.,
ARRIVE DATE.TODAY RELATIVE, or
TIME ZONE).
Pentomino The second corpus we use is of ut-
terances in a domain that we have used in much
previous work (e.g., (Schlangen et al., 2009;
Atterer and Schlangen, 2009; Fernández and
Schlangen, 2007)), namely, instructions for ma-
nipulating puzzle pieces to form shapes. The par-
ticular version we use here was collected in a
Wizard-of-Oz study, where the goal was to instruct
the computer to pick up, delete, rotate or mirror
puzzle tiles on a rectangular board, and drop them
on another one. The user utterances were anno-
tated with semantic frames and also aligned with
tag sequences. We use here a frame representation
where the slot value is a part of the utterance (as
in ATIS), an example is shown in (2). (The cor-
pus is in German; the example is translated here
for presentation.) We show the full frame here,
with all possible slots; unused slots are filled with
“empty”. Note that this representation is some-
what less directly usable in this domain than for
ATIS; in a practical system, we’d need some fur-
ther module (rule-based or statistical) that maps
such partial strings to their denotations, as this
mapping is less obvious here than in the travel do-
main.

(2) “Pick up the W-shaped piece in the upper right cor-

ner”


action = ”pick up”
tile = ”the W-shaped piece

in the upper right corner”
field = empty
rotpar = empty
mirpar = empty


The corpus contains 1563 utterances, average

length 5.42 words (sd 2.35), with a vocabulary of
222 distinct words. There are 964 distinct frames,
with 775 unique frames.

In both datasets we use transcribed utterances
and not ASR output, and hence our results present
an upper bound on real-world performance.

4 Local Models: Support Vector Machines
In this section we report the results of our exper-
iments with local classifiers, i.e. models which,
given an input, predict one out of a set of classes as
an answer. Such models are very naturally suited
to the prediction task, where the semantics of the
full utterance is treated as its class, which is to be
predicted on the basis of what possibly is only a
prefix of that utterance. We will also look at a
simple modification, however, which enables such
models to do something that is closer to the task of
computing partial meanings.

4.1 Experimental Setup
For our experiments with local models, we used
the implementations of support vector machines
provided by the WEKA toolkit (Witten and Frank,
2005); as baseline we use a simple majority class
predictor.4

We used the standard WEKA tools to convert
the utterance strings into word vectors. Training
was always done with the full utterance, but test-
ing was done on prefixes of utterances; i.e., a sen-
tence with 5 words would be one instance in train-
ing, but in a testing fold it would contribute 5 in-
stances, one with one word, one with two words,
and so on.5 Because of this special way of testing
the classifiers, and also because of the modifica-

4We tried other classifiers (C4.5, logistic regression, naive
Bayes) as well, and found comparable performance on a de-
velopment set. However, because of the high time costs
(some models needed > 40 hours for training and testing on
modern multi-CPU servers) we do not systematically com-
pare performance and instead focus on SVMs. In any case,
our interest here is not in comparing classification algorithms,
but rather in exploring approaches to the novel problem of
statistical incremental NLU.

5On a development set, we tried training on utterance pre-
fixes, but that degraded performance, presumably due to in-
crease in ambiguous training instances (same beginnings of
what ultimately are very different utterances).



tions described below, we had to provide our own
methods for cross-validation and evaluation. For
the larger ATIS data set, we used 10 folds in cross
validation, and for the Pentomino dataset 20 folds.

4.2 Results

To situate our results, we begin by looking at
the performance of the models that predict a full
frame, when given a full utterance; this is the
normal, “non-incremental” statistical NLU task.6

(3)

classf. metric ATIS Pento
maj correctness 1.07 1.79
maj f-score 35.98 16.15
SVM correctness 16.21 38.77
SVM f-score 68.17 63.23

We see that the results for ATIS are considerably
lower than the state of the art in statistical NLU
(Table 1). This need not concern us too much
here, as we are mostly interested in the dynam-
ics of the incremental process, but it indicates that
there is room for improvement with more sophisti-
cated models and feature design. (We will discuss
an example of an improved model shortly.) We
also see a difference between the corpora reflected
in these results: being exactly right (good correct-
ness) seems to be harder on the ATIS corpus, while
being somewhat right (good f-score) seems to be
harder on the pento corpus; this is probably due to
the different sizes of the search space of possible
frame types (large for ATIS, small for pento).

What we are really interested in, however, is the
performance when given only a prefix of an ut-
terance, and how this develops over the course of
processing successively larger prefixes. We can
investigate this with Figure 1. First, look at the
solid lines. The black line shows the average f-
score at various prefix lengths (in 10% steps) for
the ATIS data, the grey line for the pento corpus.
We see that both lines show a relatively steady in-
cline, meaning that the f-score continues to im-
prove when more of the utterance is seen. This is
interesting to note, as both (DeVault et al., 2009)
and (Atterer et al., 2009) found that in their data,
all that is to be known can often be found some-
what before the end of the utterance. That this
does not work so well here is most likely due to
the difference in domain and the resulting utter-
ances. Utterances giving details about travel plans

6The results for ATIS are based on half of the overall
ATIS data, as cross-validating the model on all data took pro-
hibitively long, presumably due to the large number of unique
frames / classes.
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Figure 1: F-Score by Length of Prefix

are likely to present many important details, and
some of them late into the utterance; cf. (1) above.
The data from (DeVault et al., 2009) seems to be
more conversational in nature, and, more impor-
tantly, presumable the expressible goals are less
closely related to each other and hence can be read
off of shorter prefixes.

As presented so far, the results are not very
helpful for practical applications of incremental
NLU. One thing one would like to know in a prac-
tical situation is how much the prediction of the
model can be trusted for a given partial utterance.
We would like to read this off graphs like those
in the Figure—but of course, normally we cannot
know what percentage of an utterance we have al-
ready seen! Can we trust this averaged curve if we
do not know what length the incoming utterance
will have?

To investigate this question, we have binned the
test utterances into three classes, according to their
length: “normal”, for utterances that are of aver-
age length± half a standard deviation, and “short”
for all that are shorter, and “long” for all that are
longer. The f-score curves for these classes are
shown with the non-solid lines in Figure 1. We
see that for ATIS there is not much variation com-
pared to averaging over all utterances, and more-
over, that the “normal” class very closely follows
the general curve. On the pento data, the model
seems to be comparably better for short utterances.

In a practical application, one could go with
the assumption that the incoming utterance is go-
ing to be of normal length, and use the “normal”



curve for guidance; or one could devise an ad-
ditional classifier that predicts the length-class of
the incoming utterance, or more generally predicts
whether a frame can already be trusted (DeVault et
al., 2009). We leave this for future work.

As we have seen, the models that treat the se-
mantic frame simply as a class label do not fare
particularly well. This is perhaps not that surpris-
ing; as discussed above, in our corpora there aren’t
that many utterances with exact the same frame.
Perhaps it would help to break up the task, and
train individual classifiers for each slot?7 This
idea can be illustrated with (2) above. There we al-
ready included “unused” slots in the frame; if we
now train classifiers for each slot, allowing them
to predict “empty” in cases where a slot is unused,
we can in theory reconstruct any frame from the
ensemble of classifiers. To cover the pento data,
the ensemble is small (there are 5 frames); it is
considerably larger for ATIS, where there are so
many distinct slots.

Again we begin by looking at the performance
for full utterances (i.e., at 100% utterance length),
but this time for constructing the frame from the
reply of the classifier ensemble:

(4)

classf. metric ATIS Pento
maj correctness 0.16 0
maj f-score 33.18 20.24
SVM correctness 52.69 50.48
SVM f-score 86.79 73.15

We see that this approach leads to an impressive
improvement on the ATIS data (83.64 f-score in-
stead of 68.17), whereas the improvement on the
pento data is more modest (73.15 / 63.23).

Figure 2 shows the incremental development of
the f-scores for the reconstructed frame. We see
a similar shape in the curves; again a relatively
steady incline for ATIS and a more dramatic shape
for pento, and again some differences in behaviour
for the different length classes of utterances. How-
ever, by just looking at the reconstructed frame,
we are ignoring valuable information that the slot-
classifier approach gives us. In some applications,
we may already be able to do something useful
with partial information; e.g., in the ATIS domain,
we could look up an airport as soon as a FROM-
LOC becomes known. Hence, we’d want more
fine-grained information, not just about when we
can trust the whole frame, but rather about when

7A comparable approach is used for the non-incremental
case for example by (Mairesse et al., 2009).
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Figure 2: F-Score by Length of Prefix; Slot Clas-
sifiers

we can trust individual predicted slot values. (And
so we move from the prediction task to the partial
representations task.)

To explore this, we look at First Occurrence and
Final Decision for some selected slots in Table 2.
For some slots, the first occurrence (FO) of the
correct value comes fairly early into the utterance
(e.g., for the name of the airline it’s at ca. 60%,
for the departure city at ca. 63%, both with rela-
tively high standard deviation, though) while oth-
ers are found the first time rather late (goal city
at 81%). This conforms well with intuitions about
how such information would be presented in an ut-
terance (“I’d like to fly on Lufthansa from Berlin
to Tokyo”).

We also see that the predictions are fairly stable:
the number of cases where the slot value stays cor-
rect until the end is almost the same as that where
it is correct at least once (FD applicable vs. FO
apl), and the average position is almost the same.
In other words, the classifiers seem to go fairly
reliably from “empty” (no value) to the correct
value, and then seem to stay there. The overhead
of unnecessary edits (EO) is fairly low for all slots
shown in the table. (Ideally, EO is 0, meaning that
there is no change except the one from “empty” to
correct value.) All this is good news, as it means
that a later module in a dialogue system can often
begin to work with the partial results as soon as
a slot-classifier makes a non-empty prediction. In
an actual application, how trustworthy the individ-
ual classifiers are would then be read off statistics



slot name avg FO stdDev apl avg FD stdDev apl avg EO stdDev apl
AIRLINE NAME 0.5914 0.2690 506 0.5909 0.2698 501 0.5180 0.5843 527
DEPART TIME.PERIOD OF DAY 0.7878 0.2506 530 0.7992 0.2476 507 0.2055 0.5558 579
FLIGHT DAYS 0.4279 0.2660 37 0.4279 0.2660 37 0.0000 0.0000 37
FROMLOC.CITY NAME 0.6345 0.1692 3633 0.6368 0.1692 3554 0.1044 0.4526 3718
ROUND TRIP 0.5366 0.2140 287 0.5366 0.2140 287 0.0104 0.1015 289
TOLOC.CITY NAME 0.8149 0.1860 3462 0.8162 0.1856 3441 0.2348 0.5723 3628
frames 0.9745 0.0811 2382 0.9765 0.0773 2361 0.7963 1.1936 4481

Table 2: FO/FD/EO for some selected slots; averaged over utterances of all lengths

like these, given a corpus from the domain.
To conclude this section, we have shown that

classifiers that predict a complete frame based on
utterance prefixes have a somewhat hard task here
(harder, it seems, than in the corpus used in (Sagae
et al., 2009), where they achieve an f-score of 87
on transcribed utterances), and the prediction re-
sults improve steadily throughout the whole utter-
ance, rather than reaching their best value before
its end. When the task is ‘spread’ over several
classifiers, with each one responsible for only one
slot, performance improves drastically, and also,
the results become much more ‘incremental’. We
now turn to models that by design are more incre-
mental in this sense.

5 Sequential Models: Conditional
Random Fields

5.1 Experimental Setup
We use Conditional Random Fields (Lafferty et
al., 2001) as our representative of the class of se-
quential models, as implemented in CRF++.8 We
use a simple template file that creates features
based on a left context of three words.

Even though sequential models have the poten-
tial to be truly incremental (in the sense that they
could produce a new output when fed a new in-
crement, rather than needing to process the whole
prefix again), CRF++ is targeted at tagging appli-
cations, and expects full sequences. We hence test
in the same way as the SVMs from the previous
section, by computing a new tag sequence for each
prefix. Training again is done only on full utter-
ances / tag sequences.

We compare the CRF results against two base-
lines. The simplest consists of just always choos-
ing the most frequent tag, which is “O” (for other,
marking material that does not contribute directly
to the relevant meaning of the utterance, such
as “please” in “I’d like to return on Monday,
please.”). The other baseline tags each word with

8http://crfpp.sourceforge.net/
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Figure 3: F-Score by Length of Prefix

ATIS Corr. Tag F-Score Frame F-Score
CRF 93.38 82.56 76.10
Maj 85.14 60.86 48.08

O 63.43 00.31 00.31
Pento Corr. Tag F-Score Frame F-Score

CRF 89.19 88.95 76.94
Maj 80.20 80.13 65.94

O 5.90 0.19 0.19

Table 3: Results of CRF models

its most frequent training data tag.

5.2 Results
We again begin by looking at the limiting case, the
results for full utterances (i.e., at the 100% mark).

Table 3 show three sets of results for each cor-
pus. Correctness looks at the proportion of tags
in a sequence that were correct. This measure is
driven up by correct recognition of the dummy
tag “o”; as we can see, this is quite frequently
correct in ATIS, which drives up the “always use
O”-baseline. Tag F-Score values the important
tags higher; we see here, though, that the majority
baseline (each word tagged with its most frequent
tag) is surprisingly good. It is solidly beaten for
the ATIS data, though. On the pento data, with
its much smaller tagset (5 as opposed to 95), this
baseline comes very high, but still the learner is
able to get some improvement. The last metric
evaluates reconstructed frames. It is stricter, be-
cause it offers less potential to be right (a sequence
of the same tag will be translated into one slot
value, turning several opportunities to be right into



only one).
The incremental dynamics looks quite different

here. Since the task is not one of prediction, we
do not expect to get better with more information;
rather, we start at an optimal point (when nothing
is said, nothing can be wrong), and hope that we
do not amass too many errors along the way. Fig-
ure 3 confirms this, showing that the classifier is
better able to keep the quality for the pento data
than for the ATIS data. Also, there is not much
variation depending on the length of the utterance.

6 Conclusions

We have shown how sequential and local statistical
models can be used for two variants of the incre-
mental NLU task: prediction, based on incomplete
information, and assignment of partial representa-
tions to partial input. We have shown that break-
ing up the prediction task by using an ensemble
of classifiers improves performance, and creates a
hybrid task that sits between prediction and incre-
mental interpretation.

While the objective quality as measured by our
metrics is quite good, what remains to be shown is
how such models can be integrated into a dialogue
system, and how what they offer can be turned into
improvements on interactivity. This is what we are
turning to next.
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