
See me Speaking? Differentiating on Whether Words are
Spoken On Screen or Off to Optimize Machine Dubbing

Shravan Nayak
pshravan.nayak.ece17@itbhu.ac.in

Indian Institute of Technology (BHU)
Varanasi

Timo Baumann
baumann@informatik.uni-

hamburg.de
Universität Hamburg

Supratik Bhattacharya
f20170745@pulani-bits-pilani.ac.in
Birla Institute of Technology and

Science, Pilani

Alina Karakanta
akarakanta@fbk.eu

Fondazione Bruno Kessler /
University of Trento

Matteo Negri
negri@fbk.eu

Fondazione Bruno Kessler

Marco Turchi
turchi@fbk.eu

Fondazione Bruno Kessler

Figure 1: An example: "No problem, robot", of the classification task along with the annotations (s2_1_250).

ABSTRACT
Dubbing is the art of finding a translation from a source into a
target language that can be lip-synchronously revoiced, i. e., that
makes the target language speech appear as if it was spoken by
the very actors all along. Lip synchrony is essential for the full-
fledged reception of foreign audiovisual media, such as movies and
series, as violated constraints of synchrony between video (lips)
and audio (speech) lead to cognitive dissonance and reduce the
perceptual quality. Of course, synchrony constraints only apply
to the translation when the speaker’s lips are visible on screen.
Therefore, deciding whether to apply synchrony constraints re-
quires an automatic method for detecting whether an actor’s lips
are visible on screen for a given stretch of speech or not. In this
paper, we attempt, for the first time, to classify on- from off-screen
speech based on a corpus of real-world television material that has
been annotated word-by-word for the visibility of talking lips on
screen. We present classification experiments in which we classify
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individual words as on- or off-screen. We find that this task is far
from trivial and that combined audio and visual features work best.
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1 INTRODUCTION
Dubbing is a form of audiovisual translation (AVT) [11] which con-
sists in replacing the original speech of a film with another track in
a different language to make it accessible to international audiences.
The goal is to make it appear as if the film had been recorded in the
target language all along. Therefore, translation for dubbing needs
to follow the timing and phrasing of the original language, and
special attention needs to be paid to matching phonetic features
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such as lip closure and opening angle of the jaw [4]. This additional
attention on visual-phonetic matching poses an extra constraint
for the translation and often results in wordings that are not a
literal translation of the source language. Dubbing is the preferred
type of video translation in countries with large film and streaming
markets, e. g. Germany, Italy, Spain and parts of Latin America.

Previouswork on automaticmachine dubbing has focusedmostly
on matching the length between source and target utterances, ei-
ther in terms of characters [5] or syllables [14], and has shown that,
while translation quality degrades only moderately, introducing
such matching constraints improves ‘dubbability’ (i. e., howwell the
translations can be spoken synchronously to the original speech).
This previous work, however, ignores for simplicity whether speech
is visible on screen or not, although ‘dubbability’ only applies to
speech that is spoken by a face visible on screen. In this paper, we
tackle the problem of automatically identifying those stretches of
speech where the actors’ lips are visible on screen. As translation
quality is negatively affected when applying additional constraints,
automatically identifying the stretches which require lip synchrony
is an important contribution towards avoiding drops in translation
quality for segments where no dubbing constraints are required.

Perhaps most similar to our work, Roth et al. [13] present a large
dataset (AVA-ActiveSpeaker) and models for detecting the speaker
in a video. The main difference is that they annotate every face
in every frame of the video clip whereas we only have word-level
annotations which we later align to the video. This means that
when multiple faces are visible on the screen for an on-screen word
we have no ground truth as to which face is speaking but only
the fact that a word is being spoken on screen. Furthermore, the
time duration of our video clips ranges from 1–10 s (whereas video
duration is fixed in [13]). This shows that the task of automatically
detecting which parts of a video require lip synchrony is not a
trivial task that can be solved with currently available off-the-shelf
speaker recognition solutions.

2 METHODOLOGY
2.1 Dataset
We use the television series Heroes which has previously been
transcribed and made available as a corpus [10] and which is, to our
knowledge, the only freely available dubbing corpus of real-world
television.1 The corpus consists of 7000 English utterances and their
corresponding Spanish dubbed utterances. As the original corpus
is published without the video, we have added video from the DVD
release (25 frames/s) to provide for multi-modal analysis.

2.2 Annotation
Our aim is to classify whether a word is spoken on- or off-screen,
in order to allow for fine-grained application (or relaxation) of
dubbing constraints; in particular we note that a large proportion
of all utterances in the corpus are a mixture of on- and off-screen
words, e. g. when a cut changes the camera from speaker to listener.
For this, we manually annotated all spoken words in the corpus, as
to whether they are spoken on- or off-screen (40314 resp. 16054). A
first annotator went through all data, and a second annotated 700
1The corpus includes a wide variety of pose, lighting, perspective, and artifacts from
fast motion in DVD-encoded video.

randomly selected utterances to check the reliability of annotation.
This resulted in utterances which were either fully on-screen (4163),
fully off-screen (1200) or a mixture of on-screen and off-screen
words (1614). The two annotators had an inter annotator agreement
(Cohen’s Kappa) of 𝜅 = .73 for the word-level annotation. Hence
we conclude that on/off annotation can be done with substantial
agreement among the annotators. We find that most differences
appear for utterances that contain a mixture of on-screen and off-
screen words, where the boundary between on and off differs by a
few words between the annotators.

2.3 Data Preparation
Preparing the dataset consisted of three main stages: 1) aligning
the text, speech and video, 2) face detection and extraction, and 3)
audio feature extraction, as detailed below.

2.3.1 Text-Speech-Video Alignment. Each word needs to be related
to the speech and video frames that occur while it is being spoken.
For this task we use the Munich Alignment and Segmentation tool
MAUS [8, 15] which uses phonological rules to find pronunciation
variations and attempt to best match these for high quality speech
alignment. While MAUS also provides the alignment of individual
phonemes, we only use the word-level alignments in this work.

2.3.2 Face Detection and Extraction. We use OpenFace [3], an open
source facial behavior analysis toolkit to detect and extract faces
from videos. OpenFace uses the MTCNN [17] model to detect faces
in the videos. Beyond the normalized face bitmaps, OpenFace pro-
duces a large number of features that estimate pose, gaze via 2D
and 3D landmarks and facial action units [2] that attempt to di-
rectly model facial movements. We make use of these features in
our models and analysis. During the extraction process there were
several instances where OpenFace was unable to detect any face
in the video clip (due to absence of face in the video, partial or
complete occlusion, etc.). This finally leaves us with 6225 instances
which we use to train and evaluate our models.

2.3.3 Audio feature extraction. We useMFCC features as a compact
model of speech properties every 10ms. (We experimented with
Δ-features, however these did not yield improvements.)

3 MODELS
We first describe our model components: the video and audio en-
coder and the attention layer. We then describe how we use one
or more of these components to create uni-modal or multi-modal
models.

3.1 Model Components
The video encoder consists of a convolutional and a recurrent mod-
ule. The convolutional module (CNN) takes as input an image se-
quence 𝒗 and extracts image features (𝑓𝑡 ) at each time step. These
are fed to the (bidirectional GRU) recurrent module, which helps
in capturing temporal dependencies. As CNN we use an Inception
Resnet model pretrained on the CASIA-WebFace dataset [16]. The
RNN takes as input the image features generated by the ConvNet
to produce fixed dimensional output representation for each time
step.



Figure 2: We use a mixture of hard attention (based on word alignments) and soft attention (using q/k/v systematics) to deter-
mine the representations to be passed into the decision layer for on/off-screen classification. (Not shown: audio representations
which are handled similarly.)

The audio encoder consists of only a recurrent module which
takes an audio sequence 𝒂, composed of MFCC features as input
and produces an output representation (𝑜𝑎𝑡 ) for each time step.

The attention mechanism uses a mixture of soft and hard atten-
tion, allowing the model to identify the relevant RNN states (similar
to [1], [9]). We make use of the time alignment of each word to
identify frames relevant to that word. Word-level aggregation from
frame-level features then uses the hidden state of the middle frame
of the word as the key to the query vector consisting of all hidden
states spanning the word (Fig. 2). This results in word level features.
We believe that this mechanism would help to identify the frames
which are relevant for the classification of that word and also aid
in identifying relevant frames when multiple faces are present.

We also use a joint attention mechanism to combine the aggre-
gated word level visual and audio features. For a particular word,
the word level feature from the video encoder acts as the key and
the aggregated word level features of all the words from the audio
encoder acts as the query. This results in audio aware visual feature
vectors.

The feature vectors for all the words, obtained from the joint
attention mechanism are then passed through another bi-GRU layer,
followed by a MLP with a softmax to generate the final class (on/off-
screen) for each word in the utterance.

3.2 Implemented Model Configurations
3.2.1 Baseline using OpenFace. This model uses the 711-dimen-
sional feature vector that OpenFace generates for each image as
input to the RNN instead of a video encoding from images. The
rationale for this baseline is that we expect the relatively low dimen-
sional input to be suitable for our data-sparse setup. Also, Open-
Face’s action units are designed to be suitable for our task.

3.2.2 Video-only Model. This model uses the video encoder and
the attention mechanism to produce features that are then passed
into the decision layer as described above. We speculate that it
might be capable of picking up more subtle details in facial images
than what could be found by the action units.

3.2.3 Audiovisual Model. The audiovisual model builds on the
intuition that it may help to relate the speech to the lip movements
visible on screen in order to identify if the visible lips are those
speaking or not. In this model, we use two encoders, one for audio
and one for video, and follow this with a joint attention mechanism
over both modalities to yield audiovisual representations per word
to be passed to the decision-making component.

4 EXPERIMENTS
Our models are implemented in PyTorch [12]. The CNN module
takes as input a 160×160 RGB image. Four 13-dimensional MFCC
feature vectors are concatenated to form a 52-dimensional audio
feature vector which acts as input to the audio encoder. The re-
current module in all our experiments consists of 50-dimensional
bidirectional GRU units. We train the network using cross-entropy
loss and the Adam optimizer [7] with an initial learning rate of
.0005 which decreases exponentially with a step size of .9. Dropout
is set to .5 for all layers but the attention, where the dropout is .3.
We use 5-fold cross validation and results shown are medians of
3 runs to account for random initialization for a total of 15 result
points per condition.

5 RESULTS
5.1 Word-level Classification
Table 1 shows the results for the model configurations described
above. We use area under the Receiver Operating Characteristic
curve (auROC) as the measure of performance (as a generalization
of F-measure and as in [13]).

Table 1: Median (std) area-under ROC for all configurations

Model auROC

OpenFace Baseline .65 ± .016
Video-only Model .71 ± .018
Audiovisual Model .73 ± .016



Table 2: Face detection rate for the utterances in our corpus.

Utterances Face detected

all 89.2 %
fully off-screen 68.5 %
fully on-screen 92.6 %
at least partially on-screen 93.5 %

Firstly, we observe that the baseline that directly uses OpenFace
features has the lowest score. This indicates that these features
insufficiently capture the facial movements necessary to detect
stretches requiring lip-sync (or that facial action units are unre-
liable for real-life video). This confirms our initial intuition that
automatic facial behaviour analysis tools are not sufficient for suc-
cessfully detecting a speaking face on screen for the purpose of
applying synchrony constraints and therefore there is ample space
for developing customised solutions for the task. In fact, the per-
formance is significantly higher (t-test, 𝑝 < .002) for our proposed
Video-only model.

Secondly, the Audiovisual model outperforms the Video-only
model significantly (t-test, 𝑝 < .005), which suggests that it can
learn the correspondence between audio and the mouth move-
ments (or absence thereof for off-screen words), leading to better
classification. Audio is thus helpful to distinguish arbitrary mouth
movements of a listener to the speaker’s mimicry.

5.2 Face Detection Performance
Our on/off-screen classification relies on the performance of the
face detector used (and we ignored cases where no face was found
at all in Table 1). We measured for each utterance whether a face
was detected in at least one of the corresponding video frames and
report the results in Table 2. As can be seen in that table, about
90 % of the utterances co-occur with a face detection. As we have
not manually annotated all frames for faces (but merely marked
whether speech was on- or off-screen), it is hard to estimate the
correctness of the face detector. However, we assert that a face
should be visible in utterances that are fully or partially on-screen.

The face detector misses a face in utterances in which a face
should be visible at least part of the time (according to the annota-
tion) in 6.5 % of the cases. Based on a manual analysis, we believe
that the visibility of a part of the face only, low brightness of the
scene, small size of the speaking face are the main reasons for the
failure of face detection. At the same time, utterances that are spo-
ken fully off-screen still have a substantial rate of face detection.
This matches our observations that non-speaking faces are often
visible while the speech comes from a speaker off-screen (cmp. Fig-
ure 1, left side). This again shows the importance of a specialised
solution for the task of detecting stretches requiring lip-sync. Over-
all, we find that our system’s performance may be impeded by the
two-stage approach and the errors of the face detection stage. In
particular if faces are not detected for a certain duration of on-
screen speech, the corresponding words will be classified by the
model as off-screen (majority class for such cases).

Table 3: Accuracy (mean and std dev) when aggregating
word-level classifications to the utterance level

Class Accuracy Baseline
(audiovisual) (random)

on-screen .55 ± .08 0.18
off-screen .50 ± .07 0.02
mixed with ≤ 3 word errors .38 ± .01 .30

5.3 Utterance-level Analysis
We aggregate the word-level predictions made by the model to
obtain utterance-level predictions (for the audiovisual model) in
Table 3 and contrast this with a random baseline. If decisions differ
between words in an utterance, we count these as ‘mixed’ and
we also compute the accuracy for utterances where the ‘mixed’
decision matches the corpus with ≤ 3 word errors. This analysis
is useful to understand the sequential behaviour of the classifier,
as well as to identify which types of utterances are particularly
challenging.

Table 3 shows that the per-word classification works without
flaws more often for utterances that are completely on-screen than
for off-screen utterances. By further manual analysis, we find that
for the on-screen case, the performance is hurt by the detector
used to extract faces from the video, as described in the previous
subsection. We conclude that better face detection (tuned to the
characteristics of the data) would be beneficial. Further, we have an
imbalanced and small data set where on- to off-screen words are in
the ratio (2.5 : 1). While we accounted for this during training by
over-sampling the smallest class, there are still very few off-screen
examples available to learn from. Moreover, during the face detec-
tion stage we exclude many off-screen utterances as no face was
visible on screen for these instances. We believe that this imbalance
hurts the performance of off-screen classification.

For the mixed class, the model often fails to accurately detect the
boundary between on- and off-screen words (but still outperforms
the random baseline). We also experienced the difficulty of precisely
identifying the boundary between on- and off-screen speech while
annotating the data.

6 CONCLUSIONS
We have presented the task of determining for every word that is
spoken in a video whether the speaking face is visible on screen
or not. This differentiation is useful for fine-grained control of
automatic dubbing, as it allows for adding synchrony constraints to
generate translations respecting the norms of visual phonetics [6]
only for those stretches of speech where lips are visible on screen.
We find that we can approach this task achieving reasonably good
performance, in particular when taking into account both audio
and video in a multi-modal classifier, despite the higher number of
parameters to be trained. We believe that both the classifier as well
as the gold-standard annotations will be an important component
to accelerate the design and implementation of machine translation
solutions for dubbing.
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