
SIMULATING SPOKEN DIALOGUE WITH A

FOCUS ON REALISTIC TURN-TAKING

Timo Baumann

University of Potsdam

timo@ling.uni-potsdam.de

Abstract. We present a system for testing turn-taking strategies in a simulation en-
vironment, in which artificial dialogue participants exchange audio streams in real
time – unlike earlier turn-taking simulations, which interchanged unambiguous sym-
bolic messages. Dialogue participants autonomously determine their turn-taking be-
haviour, based on their analysis of the incoming audio. We use machine-learning
methods to classifiy the continuous audio signal into symbolic turn-taking states.
We experiment with various rule sets and show how simple, local management rules
can create realistic behavioural patterns.

1. Introduction

Turn-taking management, i. e. deciding who may speak when in a dialogue, is an impor-

tant subtask of interaction management. The classical model of turn-taking (Sacks, et al.

1974) describes turn-taking as locally managed (depending only on a local context) and

predictive (upcoming turn endings are signalled in advance by the interplay of syntax,

semantics and prosody). Current spoken dialogue systems (SDSes) on the other hand,

use reactive turn-taking schemes, with the turn being taken after a silence of fixed length

or of contextually determined length (Ferrer, et al. 2002). This limits the interactivity of

SDSes, as turns have to be separated by intervening silence.

The prediction of turn endings (EoT prediction) has been investigated by a number

of authors. Schlangen (2006) trains classifiers to predict the end of turn (EoT) but uses

features that are not calculated strictly incrementally. Turn-management has also been

studied before, but typically in simulation systems that interchange symbolic messages

and work in a centrally managed environment (Padilha 2006). In the present paper, we

combine the efforts for EoT-prediction and turn-taking simulation. We propose an incre-

mental classification of speech into speech states that control the system’s turn-taking. We

first evaluate the classification itself and then combined with different turn-management

strategies in a dialogue simulation environment.

Dialogue simulation itself has a long standing tradition in the development of SDSes,

but the main focus seems to be on the improvement of dialogue strategies (Schatzmann,

et al. 2006) and audio is usually just used to trigger realistic ASR errors (López-Cózar,

et al. 2003), which contrasts with the focus of the present paper: Our goal is to show how

realistic turn-taking behaviour can be simulated using only local context for the classifi-

cation of speech into classes relevant to turn-taking management combined with simple,
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Figure 1: A human user conversing with an artificial DP in our interaction environment

(structured as in section 2). A dialogue recorder wiretaps their conversation.

locally managed rules. Dialogue strategies in general are not locally managed and thus

learning dialogue strategies seems to require the more complex reinforcement learning

instead of simple classifier training which we use.

We do not (and do not need to) take into account the content of the dialogues and

in fact we limit our speech analysis to simple prosodic features for the EoT prediction.

Thus, for this work, we abstract away from all questions of content management and let

our dialogue participants speak randomly selected pre-recorded utterances – though with

proper turn-taking.

The remainder of the paper is structured as follows: Section 2 describes the sys-

tem architecture and Section 3 the corpora we use. Section 4 evaluates the speech state

classification and Section 5 demonstrates and evaluates some simple turn-management

strategies. We close with conclusions and ideas for further work.

2. Architecture of the Interaction Environment

Our architecture defines an interaction environment in which dialogue participants (DPs)

communicate with each other. Interaction is purely non-symbolic, using asynchronous

audio streams over RTP (Schulzrinne, et al. 2003). There is no common clock, or other

synchronisation required between DPs. The architecture provides a headset tool for hu-

man DPs, and monitoring tools to listen to ongoing dialogues and to record them to disk.

Figure 1 shows two dialogue participants – one human, one artificial – conversing in

the environment described above. The artificial DP on the right of figure 1 is structured

as described below.

Artificial DPs are realized as modular and extensible collections of event-driven soft-

ware agents in the open agent architecture, OAA (Martin, et al. 1999). In the OAA each

software agent advertises its own abilities to solve problems (such as generating utter-

ances) and may itself request other agents to solve sub-problems (e. g. sending data over

RTP). For audio processing inside the DP we rely on the Sphinx-4 framework (Walker,

et al. 2004) which we extended for our audio-processing pipeline. In the current system,

we do not yet use Sphinx’ abilities as a speech recognizer and most other modules that

would be needed for a real dialogue system are missing. These are obvious enhancements

for later versions.
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2.1. Speech Generation

Speech generation consists of a synthesizer and a dispatcher. The synthesizer currently

selects from a corpus of pre-recorded utterances and will be extended to include text-to-

speech. To make turn-taking management harder and the system more realistic a fixed

delay of 100ms between signal to the module and onset of the recorded utterance is

introduced at this point.1 This delay is realized by sending 100ms of recorded silence

before the utterance and utterances are also followed by 100ms of recorded silence. (If

DPs were to send digital zeros directly before and after their utterances, speech state

classification, as described below, would become trivial.)

The speech dispatcher continuously sends an RTP stream in packets of 10ms, either

audio from a file or sine waves if so instructed by the synthesizer, or silence (digital zero).

It can also be ordered to interrupt the audio and to revert to silence. The dispatcher also

publishes its current speech statewhich may be one of sil, start of turn (SoT), talk, or end

of turn (EoT) to the DP it is part of.

2.2. Speech Analysis

Speech analysis focuses solely on local prosodic analysis for the classification of the

listening state (which should reflect the interlocutor’s speech state, as described above).

In order to be effective, classification must happen with as short a lag as possible. While

short lags would allow for reactive behaviour, we aim to predict when the interlocutor’s

end of turn is approaching in order to achieve smooth turn changes and counter-balance

the 100ms lag before a response can be uttered by the speech generation.

We use machine learning to classify each received frame (10ms) of audio as si-

lence (sil), ongoing talk (talk) or end of turn (EoT). Classification is based exclusively on

signal power, pitch and derived features. Our pitch extraction is modelled after the first

three steps of the YIN algorithm (de Cheveigné & Kawahara 2002). As no smoothing

or dynamic programming is applied to the pitch extraction, results are computed incre-

mentally in real-time and become available instantaneously. The algorithm runs at several

times real-time on average hardware. On the corpora described below, the gross error rate

is 1.6% compared to the well known ESPS algorithm (Talkin 1995).

In order to track changes over time, we derive features by windowing over past values

of pitch and power with sizes ranging from 20 to 500ms. While the features calculated

on smaller windows help to smooth and to remove outliers due to failures of the pitch

extraction, the larger windows are expected to capture long-term trends. We calculate the

arithmetic mean and the range of the values, the mean difference between values within

the window and the relative position of the minimum and maximum. We also perform

a linear regression and use its slope, the MSE of the regression and the error of the

regression for the last value in the window.

2.3. Turn-Taking Management

The turn-taking management agent determines whether to start or stop emitting utterances

on the basis of the states of the generation and analysis modules. An important aspect in

turn-taking management is robustness. To be robust, the turn-taking strategy must not

1In a dialogue system NLG and TTS would require processing time; for humans there is a delay between
starting to plan an utterance and the start of the articulation (Levinson 1983).
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depend on its interlocutor acting and reacting in certain ways. Naturally, “good” dialogue

will only evolve from friendly dialogue partners, but the turn-management strategy must

prevent dead-locks due to the interlocutor’s behaviour.

Upon the reception of dialogue state change notifications from the analysis module,

the agent decides about emitting messages to the generation module, ordering it to talk

or to hush, according to a defined turn-taking strategy. Messages are only emitted with

certain probabilities. The probabilities to start or hush were determined empirically to

lead to natural performance. If no action is taken, the agent sleeps for a short while (cur-

rently, 50ms) being awakened if another message is received (for example EoT changing

to sil). Thus, exact timings are non-deterministic and randomly differ between agents.

The probability to start an utterance is set to 0.1, and to hush during an utterance to 0.3.

3. Corpora

We perform our experiments with two different corpora, one of simple pseudo-speech, one

of read speech. Each corpus contains material from two different speakers (one female,

one male) for which we train separate speech analyzers, in order to be able to simulate

dialogues with one male and one female each.

For pseudo-speech our speakers repeatedly uttered the syllable /ba/ instead of the ac-

tually occuring syllables in a script of 50 utterances (questions, informative sentences,

confirmations, etc). By always uttering the same syllable, we remove segment-inherent

influences on power and pitch variation, while at the same time retaining sentence into-

nation. For read speech we relied on the two major speakers of the Kiel Corpus of Read

Speech, KCoRS (IPDS 1994). That corpus contains some 600 utterances for each speaker.

The two corpora differ in size and complexity. Our controlled pseudo-speech poses

hardly any problem for pitch-extraction and does not contain voiceless speech, silence

during the occlusion of voiceless plosives or other potentially “difficult” audio. The

KCoRS on the other hand contains far more training material. Also, as the pseudo-speech

does not convey any semantic meaning, subjects in a listening test for the evaluation of

generated turn-taking patterns would not be distracted by nonsense dialogue.

The performance of a speech state classifier on both of our corpora is likely to be

better than on a corpus of real dialogue speech as it is more homogenous (especially

compared to speaker-independent speech state classification). Thus, our results should be

considered an upper bound on realistic results.

The start and end of each utterance were hand-annotated and each 10ms of audio was

assigned to one of the listening states as described above with EoT being assigned to

frames in the vicinity of ± 50ms of the utterance end. For the turn-taking management

experiments, we crop the audio files so that each utterance is preceeded and succeeded by

100ms of silence.

4. Speech Analysis Evaluation

We used the machine learning toolkit Weka (Witten & Frank 2000) to train various

speaker-dependent classifiers. For the evaluation 80% of each corpus were used as

training- and 20% as test-set. Tables 1 and 2 show the results of the OneR-, J48 and

JRip-algorithms for each corpus. OneR finds the most predictive feature to be the dy-
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classifier
female speaker male speaker

Acc. Fsil Ftalk FEoT FAR Acc. Fsil Ftalk FEoT FAR

OneR 96.1 0.98 0.96 0.00 21.4 92.8 0.96 0.93 0.13 65.5
J48 94.8 0.98 0.95 0.50 68.9 96.3 0.97 0.97 0.71 64.3
JRip 95.3 0.98 0.95 0.55 68.3 96.2 0.97 0.97 0.80 59.2
Stateful JRip 95.9 0.98 0.95 0.59 48.4 95.5 0.97 0.96 0.72 50.0
Stateful JRip, shifted 96.2 0.98 0.96 0.59 48.4 96.4 0.97 0.97 0.80 47.5

Table 1: Accuracy, per-class f-measures and false alarm rate for various speech state

classifiers for the pseudo-speech corpus.

classifier
female speaker male speaker

Acc. Fsil Ftalk FEoT FAR Acc. Fsil Ftalk FEoT FAR

OneR 94.5 0.97 0.96 0.03 65.4 93.7 0.92 0.96 0.10 80.7
J48 97.3 0.98 0.98 0.61 71.1 96.1 0.96 0.98 0.42 84.1
JRip 96.6 0.97 0.98 0.73 61.1 95.9 0.97 0.96 0.61 65.7
Stateful JRip 96.4 0.96 0.98 0.70 31.9 94.9 0.97 0.96 0.58 50.0
Stateful JRip, shifted 96.9 0.97 0.98 0.74 31.6 95.5 0.97 0.96 0.64 48.9

Table 2: Accuracy, per-class f-measures and false alarm rate for various speech state

classifiers for the KCoRS speakers.

namic range of frame energy over the last 100 or 200ms. JRip outperforms J48, but

has far worse training complexity. Separation of speech and silence (which here is the

recorded silence in the corpus, not digital zero) is done with high accuracy. Recognition

of EoT regions is of lower quality, but still surpasses results in (Schlangen 2006).2

While the data and their states are sequential in nature, the classifiers as described

above evaluate each frame independently. At the same time, recognizing the other spea-

ker’s start or end of turn a little too late or too early hardly matters, while frequently

changing the listening state may lead to bad dialogue behaviour. This is measured in the

false alarm rate (FAR), defined as the proportion of over-generated state changes.

The analysis of classification output showed that wrong classifications would often

last for only one frame. We implemented a stateful classifier that only changes state

after two consecutive classifications of the underlying classifier. This strongly decreases

FAR but introduces systematic errors in the classification (every actual state change will

be registered one frame too late) and reduces precision/recall measures. When this is

accounted for in the evaluation, the stateful classifier outperforms the base classifier also

in these measures.

The results show, that the complexity of the KCoRS is counterbalanced by its 10

times larger size. This may indicate, that speech state classification for real dialogue

speech would be feasible with a sufficiently large corpus and speaker-normalized prosodic

features.

5. Simple Strategies for Turn-Taking

We outline some simple strategies to turn-control. Their purpose is to exemplify how

very restricted locally managed behaviour with some simple rules can already lead to

acceptable turn-taking behaviour as postulated by the local management model of Sacks

et al. (1974), without the need for a dialogue history, or complex temporal reasoning.

2Results cannot be easily compared, as Schlangen (2006) recognizes turn-final words using prosodic
and syntactic features on a more complex corpus, reaching an f-measure of 0.36.
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measure strategy 1 strategy 2 strategy 3
gap 14.0 % 351 ms 18.7 % 358 ms 17.4 % 362 ms
speaker a 31.4 % 1259 ms 35.9 % 1009 ms 36.5 % 1079 ms
speaker b 39.3 % 1415 ms 39.8 % 1165 ms 40.8 % 1225 ms
clash 15.4 % 1184 ms 5.6 % 317 ms 5.3 % 278 ms

Table 3: Distribution and mean duration of dialogue states for three turn-taking strategies

with pseudo-speech.

measure strategy 1 strategy 2 strategy 3
gap 14.1 % 528 ms 20.7 % 477 ms 18.9 % 454 ms
speaker a 36.2 % 1764 ms 40.5 % 1456 ms 34.7 % 1232 ms
speaker b 26.2 % 1437 ms 24.8 % 1307 ms 42.0 % 1540 ms
clash 23.5 % 1915 ms 4.0 % 253 ms 4.4 % 243 ms

Table 4: Distribution and mean duration of dialogue states for three turn-taking strategies

with KCoRS speakers.

5.1. Measuring Turn-Management Success

The dialogue state can be described by the current speech state of each of the dialogue

participants, with each speech state being either talk or sil. For two-party dialogue, this

results in four states: two “good” states where either one of the dialogue participants is

talking and two “bad” states: Clashes when both participants talk simultaneously, and

gaps with neither of them talking.

According to Sacks et al. (1974), speakers try to optimize their behaviour so as to

minimize the occurence of both clashes and gaps. That is why we choose clashes and

gaps as basic measures for turn-taking success. Slight gaps and clashes occur all the time,

but they are not always perceptually relevant. We thus decided to calculate the proportion

of clashes and gaps over the course of the dialogue as well as their mean duration.

For evaluation purposes, we set up two artificial dialogue participants and let them talk

with each other for about 10 minutes for each of the following strategies. We recorded

the internal states and calculated the described measures. The audio itself was recorded

but not further analyzed in the evaluation. The results of the strategies described below

are shown in tables tables 3 and 4.

5.2. Strategy 1: Talk When Nobody Talks

Rule: Start an utterance when neither you nor your interlocutor is talking. (Implicitly:

Continue talking until your utterance is finished.)

The performance with this strategy strongly depends on the round-trip time from one

agent’s decision to take the turn until the other agent notices the turn being taken. The

shorter the lags introduced by the talking agent’s internal communication, audio transmis-

sion, prosodic processing and classification, and the listening agent’s internal communi-

cation, the more likely it is for a dialogue participant to notice its interlocutor talking (and

then listen until he has finished) before she has started talking herself. For longer lags,

the DP will decide to talk even though its interlocutor may already have started talking

himself. As can be seen, this strategy leads to a large amount of clahes.

5.3. Strategy 2: Hush When Both Talk

Rule as above, plus: Stop your utterance when both you and your interlocutor are talking.
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The rule proves effective in reducing simultaneous talk as clashes are reduced by 65%

(pseudo-speech) and over 80% (KCors) respectively. At the same time, this strategy leads

to the introduction of utterance truncations, when an utterance was stopped prematurely.

(Actually, the majority of utterances (71% for pseudo-speech) was truncated, but many of

these truncations occur in the silent phases before or after the actual talk and do not have

any deteriorating effect on the perceived turn-taking performance.) Truncations could be

reduced with a higher probability to hush during SoT.

5.4. Strategy 3: Start Talking Early

The previous strategies only react after turns have started or ended. In order to initiate

actions early and anticipates turn changes, this strategy exploits the EoT class of the

speech analysis (which was ignored before) in the first rule: Start an utterance, when you

are not talking and your interlocutor is ending their turn or has already finished.

By starting utterance planning before the interlocutor’s preceding utterance is finished,

the dialogue participant can hide some of the lag introduced by its speech generation

module. The duration of both gaps and clashes is reduced compared to strategy 2, for

gaps because turns will be taken over more quickly and for clashes due to the original

talk-owner noticing the turn-change earlier, avoiding the start of a new utterance.

The durations for gaps and clashes with this strategy are similar to those reported for

parts of the Verbmobil corpus by Weilhammer & Rabold (2003), with 363ms and 331ms

respectively.3 Performance could be further improved by using a lower probability to

hush during EoT.

6. Conclusion and Future Directions

We have presented a flexible, modular architecture for dialogue strategy evaluation where

arbitrary pairings of human users and artificial dialogue participants can be created. We

have discussed a case-study in this environment, where pairs of artificial DPs converse in

real time via audio. Each DP autonomously decides on their turn-taking behaviour (start

or stop talking) based on a local analysis of the audio signal and using machine-learned

classifiers. We tested these with corpora of simplified speech and achieve good recog-

nition performance. Three implemented turn-management rulesets, all of them locally-

managed in the sense of Sacks et al. (1974), i. e. not requiring dialogue memory, were

shown to create increasingly realistic behavioural patterns.

We plan to use the components developed for this system in an interactive spoken

dialogue system. For the speech state classification, we will need normalized prosodic

features that allow for speaker independent speech state classification. At the same time,

ASR will make features relative to syllable information (stress patterns, speech rate, ...)

accessible, as well as word hypotheses. We may also want to look into classifier confi-

dence scores, only emitting speech state changes if the classifier is reasonably certain.

In real dialogue, the problem of hesitations arises. Our classification will have to be

extended to distinguish hesitational interruptions from normal EoT. We would also like to

identify positions in a turn where a back-channelling utterance might be appropriate.

3Note, that their numbers are for turn changes only, while we do not distinguish between gaps at turn
changes and at turn continuations.
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