Analysis of Rhythmic Phrasing: Feature Engineering vs. Representation Learning for Classifying Readout Poetry

Timo Baumann

Carnegie Mellon University
Language Technologies Institute

Hussein Hussein Burkhard-Meyer-Sickendiek

.

Analysis of Rhythmic Phrasing: Feature Engineering vs. Representation Learning for Classifying Readout Poetry

in particular: (post)modern free-verse poetry

Rhythmicalizer project

• **Objective:** Automatic classification of rhythmical patterns in readout poetry based on a "free verse prosody"

Project:

Duration: 2017-2020

Funding by the Volkswagenstiftung in the program

"Mixed Methods in the Humanities"

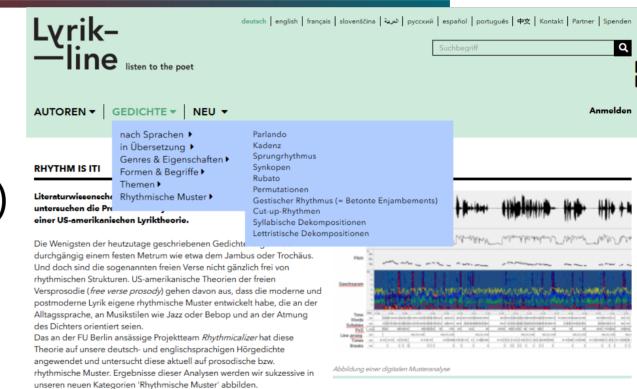
Cooperation Partner:

Literaturbrücke e.V. with its webpage lyrikline.org

Lyrikline: author-spoken post-modern poetry

- > 11000 poems
- > 1200 poets
- > 80 languages (primarily DE & EN)

 many poetic translations



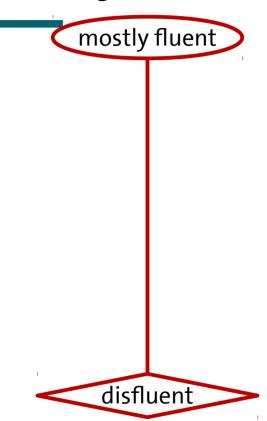
Die theoretische Grundlage der Untersuchung ist eine in Deutschland kaum bekannte US-amerikanische Forschungsdiskussion, die sogenannte free verse prosody:

- **Fluency** of cognitive processing causes positive effect of aesthetic experience (Topolinski and Strack, 2009)
- Stimuli that are processed more easily get higher rankings (Belke et al., 2010)
- Abstract art (Picasso or Schönberg) created disfluency as an artistic strategy (Bullot and Reber, 2013)
- **Disfluency** prompts people to process information on a higher level of abstraction (Smith and Smith, 2006)

- **Fluency** of cognitive processing causes positive effect of aesthetic experience (Topolinski and Strack, 2009)
- Stimuli that are processed more easily get higher rankings (Belke et al., 2010)
- Abstract art (Picasso or Schönberg) created disfluency as an artistic strategy (Bullot and Reber, 2013)
- **Disfluency** prompts people to process information on a higher level of abstraction (Smith and Smith, 2006) disfluent

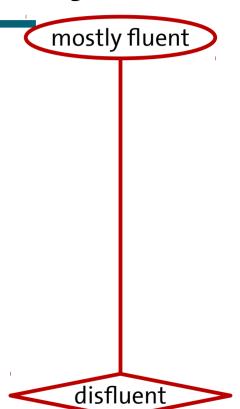
literary stylistic classes along the continuum:

- Parlando style
- Variable foot
- Unemphasized enjambment
- Gestic rhythm
- Syllabic decomposition
- Lettristic decomposition



literary stylistic classes along the continuum:

- Parlando style
- Variable foot
- Unemphasized enjambment
- Gestic rhythm
- Syllabic decomposition
- Lettristic decomposition



Audio examples

literary stylistic classes along the continuum:

- Parlando style Benn: TEILS-TEILS
- Variable foot Jandl: beschreibung eines gedichts
- Unemph. enjamb. Kirsten: BEINHART
- Gestic rhythm Hensel: ALS ICH BEI IHM WAR
- Syllabic dec. Jandl: auf dem lande
- Lettristic dec. Jandl: schtzngrmm

disfluent

mostly fluent

Stylistic classes along the spectrum

- literature discusses styles of poetry
 - theories about relations of styles, e.g.:
- Rhythmic Phrasing in English Verse (Cureton 1992)
 - based on theory in tonal music
 - rhythm consists of meter: perception of beats in regular patterns grouping: linguistic units around a single climax prolongation: anticipation and overshooting of a goal

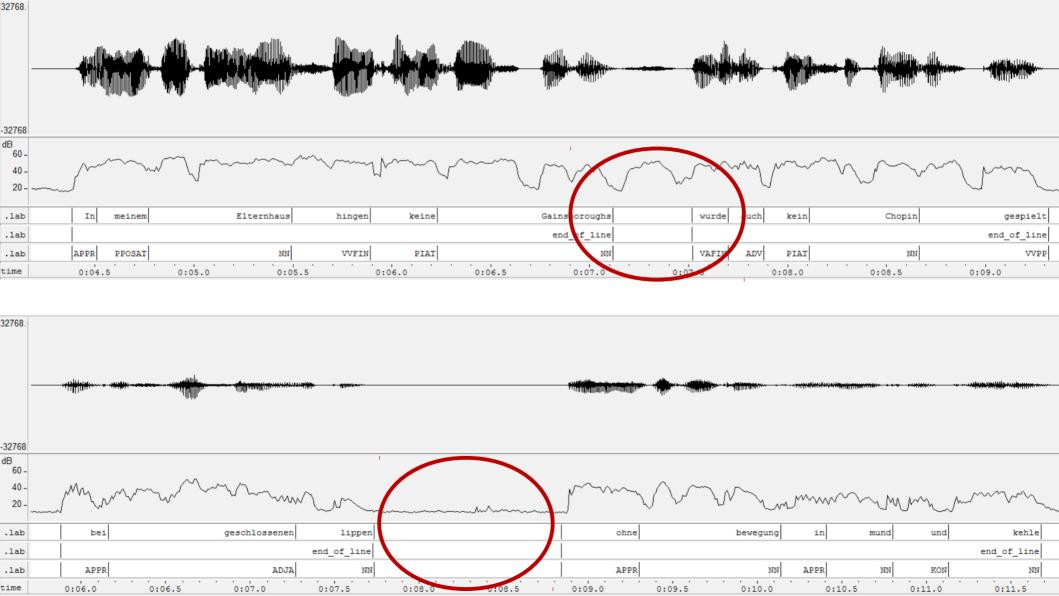
Stylistic classes along the spectrum

- literature discusses styles of poetry
 - theories about relations of styles, e.g.:
- Rhythmic Phrasing in English Verse (Cureton 1992)
 - based on theory in tonal music
 - rhythm consists of meter: perception of beats in regular patterns

grouping: linguistic units around a single climax prolongation: anticipation and overshooting of a goal

Parlando and Variable Foot

- similar grouping in lines of phrases/clauses
 - frequent use of enjambments,
 breaking of contextual units across lines
- different prolongation:
 - Parlando flows smoothly across line-breaks
 - Variable foot uses breath-controlled lines and pauses between lines
- Parlando uses "more fluent" spoken form



Experiment:

classify style based on text + audio

- features that (partially) align to theory
- theory-agnostic representation learning with Nns

forced alignment of text + speech
 POS tagging with Stanford parser (STTS tagset)

Data

- German poems
- 68 poems (34 each per class Parlando and VarF)
- 24 authors (reading 1-9 poems each)
- 9-200 lines / 27-700 seconds per poem

Feature-Engineering and Classification

- motivated by theory:
 - avg. pause duration between lines
 - → captures strength of enjambments
 - avg. pausing between words
 - → indirectly normalizes for speech tempo
- additionally:
 - there may be differences in phrasing
 - → #lines, #with finite verb, #with punctuation

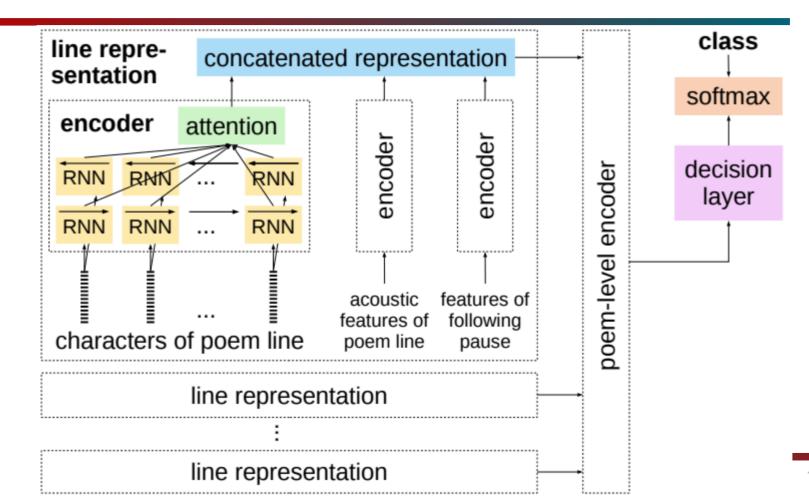
Results for feature-based Classification:

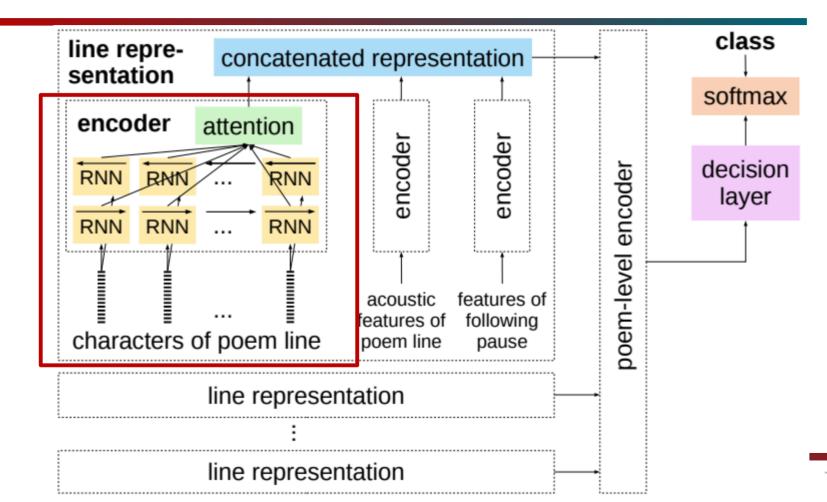
Table 1: Experimental results (weighted average of f-measure) obtained with the 10 fold cross-validation by applying different feature sets on several classification algorithms.

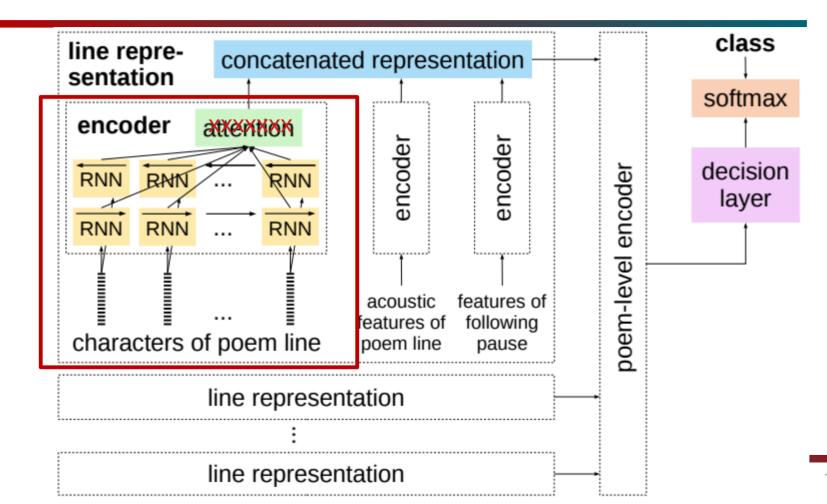
Features Classifier	Pause	Parser	Pause & Parser
AdaBoostM1	0.59	0.69	0.62
IBk	0.68	0.68	0.59
SimpleLogistic	0.47	0.63	0.66
RandomTree	0.65	0.56	0.53

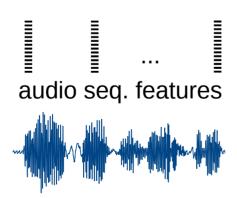
Analysis

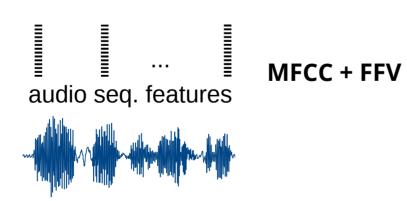
- "better than chance" classification
- large variation between diff. classifiers
 - probably indicative of instability of results
- very little data → just 68 poems
- few features (but what would be better features?)

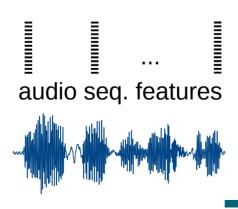










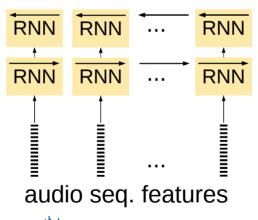


MFCC + FFV

standard speech features

MFCC + FFV

standard speech features character embeddings for text

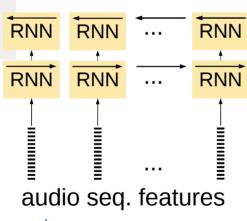


bi-directional LSTMs work better than uni-directional LSTMs.

MFCC + FFV

standard speech features character embeddings for text

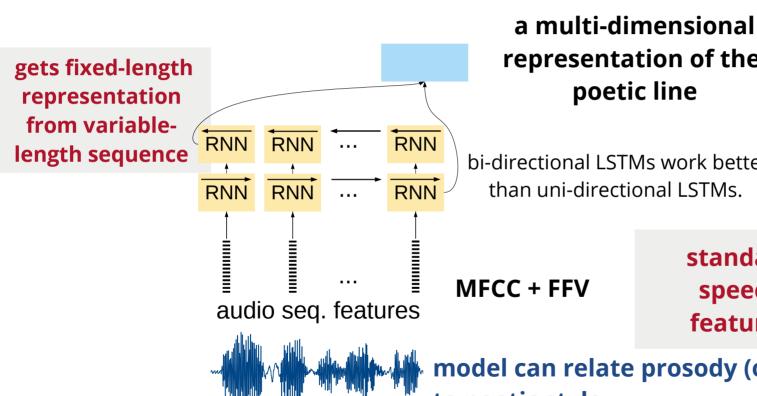
gets fixed-length representation from variable-length sequence



bi-directional LSTMs work better than uni-directional LSTMs.

MFCC + FFV

standard speech features character embeddings for text

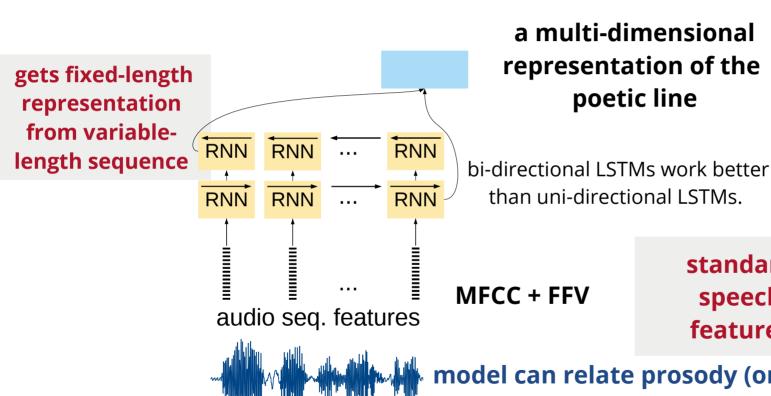


representation of the

bi-directional LSTMs work better

standard speech features

character embeddings for text



unfortunately not easily interpretable

standard speech features

character embeddings for text

class label

gets fixed-length representation from variable-RNN RNN RNN length sequence RNN RNN RNN MFCC + FFV audio seg. features

a multi-dimensional representation of the poetic line

bi-directional LSTMs work better than uni-directional LSTMs.

> standard speech features

character

embeddings

for text

unfortunately

not easily

interpretable

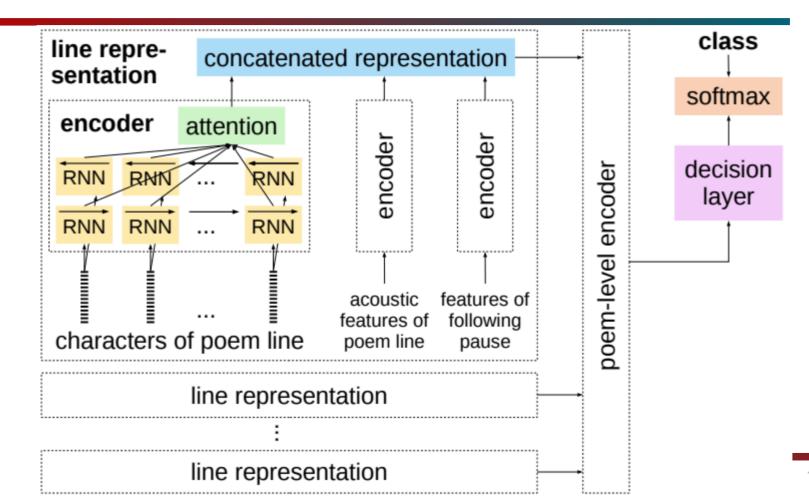
RNN modeling of a sequence class label

hidden layer (tanh) a multi-dimensional representation of the gets fixed-length poetic line representation from variable-RNN RNN **RNN** length sequence bi-directional LSTMs work better than uni-directional LSTMs. RNN RNN RNN MFCC + FFV audio seq. features

unfortunately not easily interpretable

standard speech features

character embeddings for text



Neural networks-based approach

- NNs are good at identifying hidden patterns
- but typically require large amounts of data
 - only 68 poems!!
 - but together they consist of 2313 lines
- two-stage training:
 - pretrain a model that classifies lines
 - use pretraining results to train poem classification

Training procedure for Neural Network:

- based on the forced-alignment, use:
 - characters of the line
 - audio of the line
 - audio of the following pause
 - to train a line-by-line classifier
 - results in reasonably pre-trained line-representations
- train another line-to-poem encoder for full poem classification

Training setup:

- keep #parameters low
 - low dimensional character encodings
 - GRUs (fewer parameters than LSTMs)
- dropout to avoid overfitting

10-fold crossvalidation

Results and Comparison

Table 1: Results (weighted f-measure) for both approaches.

classifier and feature engineering		NN aı	NN and representation learning			
pause	parser	pause+parser	text	text+speech	text+speech+pause	
0.59	0.69	0.62	0.65	0.85	0.85	

- Hierarchical network outperforms
- most value seems to be in the speech
- prolongation not only expressed by pause

Extension of the NN to 6 classes (Coling paper)

	f-measure	parlando	var. foot	unemph. enj.	gestic	syll. dec.	lettr. dec.
parlando	0.83	30	2	2			
variable foot	0.60	3	20	6	5		
unemph. enj.	0.71	2	4	27	3		
gestic rhythm	0.68		6	5	21		1
syllabic dec.	0.81	2	1			17	1
lettristic dec.	0.77	1				4	12

	all features	no pause	text-only
all six classes	0.73	0.66	0.47
parlando vs. variable foot	0.85	0.85	0.65
unemphasized enjambment vs. gestic rhythm	0.78	0.66	0.57
syllabic vs. lettristic dec.	0.82	0.92	0.82

Rhythmicalizer project

Thank you!

www.timobaumann.de/work

Rhythmicalizer project

Thank you!

Thank you!

Thank you!

Thank you!

Thank you!

• • • • Volkswagen**Stiftung**

www.timobaumann.de/work

Character-based embeddings?

Character-based embeddings?

- can character-based embeddings be used to attest high-level phenomena?
 - → the RNN step recombines the characters to words (or other more abstract concepts)
- still, why not use word-embeddings?
 - →consider decomposition poetry:

Character-based embeddings?

- can character-based embeddings be used to attest high-level phenomena?
 - → the RNN step recombines the characters to words (or other more abstract concepts)
- still, why not use word-embeddings?
 - →consider decomposition poetry:

rinininininininDER
brüllüllüllüllüllüllüllüllüllEN
schweineineineineineineine
grunununununununZEN

```
schtzngrmm
schtzngrmm
t-t-t-t
t-t-t-t
```

