SIGDial 2012

Combining Incremental Language Generation and Incremental Speech Synthesis for Adaptive Information Presentation

Hendrik Buschmeier*, **Timo Baumann****, Benjamin Dorsch*, Stefan Kopp*, David Schlangen*

*U Bielefeld, **U Hamburg, Germany

Combining **Incremental Language Generation** and **Incremental Speech Synthesis** for Adaptive Information Presentation

→ Incremental Speech Output

Speech Output in Typical Dialogue Systems

current point in time

There's an appointment today at 4:25 titled: 'SigDial Talk' with the note: 'be on time'.

• full utterances are generated, synthesized and delivered as a whole

Speech Output in Typical Dialogue Systems

canned speech in deployed systems

Speech Output in Typical Dialogue Systems

- inflexible: unable to change the ongoing utterance
 - no way to react to the listener or the environment

Potentially Better: Incremental Speech Output

current point in time

There's an appointment today at 4:25 titled: 'SigDial Talk' with the note: 'be on time'.

• generate, synthesize and deliver the utterance in smaller *chunks*

Potentially Better: Incremental Speech Output

There's an appointme	ent today at 4:25	titled:	<i>'SigDial Talk</i>	<i>with the note:</i>	'be on tim
1					

• less utterance-initial processing \rightarrow faster onset

Potentially Better: Incremental Speech Output

- incremental output may take changes into account
- react and adapt to user feedback / requests / noise

Outline of the Talk

✓ Goals for Incremental Speech Output

- Incremental Speech Output
 - Incremental Natural Language Generation (iNLG)
 - Incremental Speech Synthesis (iSS)
- Application & Results:
 - Massively Reduced System Latency
 - Adaptive Information Presentation Preferred by Listeners

Overview

- split up into two (generic) processors:
 - natural language generation (iNLG)
 - speech synthesis (iSS)

- implemented in the IU framework using INPROTK
 - available as open-source: http://inprotk.sourceforge.net

(Schlangen and Skantze, 2009; Baumann and Schlangen, 2012)

Overview

- starting with an utterance description
- iNLG splits the utterance in chunks and outputs one chunk to the buffer that is shared with iSS

Overview

• iSS processes chunk to produce phonemes

linguistic processing via MaryTTS (Schröder & Trouvain, 2003)

Overview

- iSS processes chunk and
- synthesizes *just-in-time* (only with enough look-ahead to keep all buffers full)

a *Just-In-Time* Formulation for Incremental Speech Synthesis

• triangular "top-down-left-to-right" data structure

Overview

• using a *crawling vocoder* that performs HMM optimization and vocoding in real-time

(largely based on MaryTTS code; see also Dutoit et al., 2011)

Overview

- using a *crawling vocoder* that performs HMM optimization and vocoding in real-time
- when nearing the end of the current chunk ...

Overview

• update-messages are sent from phonemes to chunk to iNLG

(this is a generic update mechanism in INPROTK)

Overview

- and iNLG adds another chunkIU before synthesis runs out of speech
- it's integrated & appended to the ongoing synthesis

• the process repeats until all chunks are synthesized

Summary

- two components:
 - iNLG: turns ideas into words
 - iSS: turns words into speech audio
- features:
 - low-latency changes to upcoming chunks
 - highly modular implementation of the components
- questions:
 - what exactly are these chunks?
 - how can we ensure utterance cohesion?
 - what's the chunks' granularity?

Granularity of Incremental Chunks

- granularity $\hat{=}$ size of the units
 - determines responsiveness to changes
 - determines context available for coherent processing
- ideally: generate word-by-word
 - highly responsive behaviour

- granularity $\hat{=}$ size of the units
 - determines responsiveness to changes
 - determines context available
- ideally: generate word-by-word
 - however, this may be infeasible

NP

- granularity $\hat{=}$ size of the units
 - determines responsiveness to changes
 - determines context available
- ideally: generate word-by-word
 - however, this may be infeasible

- granularity $\hat{=}$ size of the units
 - determines responsiveness to changes
 - determines context available
- ideally: generate word-by-word
 - however, this may be infeasible

- granularity $\hat{=}$ size of the units
 - determines responsiveness to changes
 - determines context available
- ideally: generate word-by-word
 - however, this may be infeasible
- surface structure cannot always be produced purely left-to-right and word-by-word

Granularity of Incremental Chunks for Speech Synthesis

- input units should ensure a coherent prosodic realization
 - "This. must. be. avoided."
 - allow for some lookahead into the future
- → our sub-utterance chunks:
 - roughly correspond to intonation phrases
 - coarse granularity of incremental generation
 - *ideal* size remains an open research question

Incremental Natural Language Generation

• we combine two interacting sub-components that share a common state

(please ask Hendrik Buschmeier for details)

Micro-Content Planning (MCP)

- turns utterance outline into
 - set of desired updates on listener's information state
 - presuppositions and private knowledge
- generates incremental micro-planning tasks (IMPTs, one at a time)

Micro-Planning Proper (MPP)

- takes one IMPT
- uses SPUD to generate surface form
- adds generated communicative intent
 to common state between
 MCP and MPP
 - taken into account for generation of next IMPT
 - for coherence & adherence to pragmatic principles

our implementation uses JavaSPUD (DeVault, 2008)

Combining Incremental Language Generation and Incremental Speech Synthesis for Adaptive Information Presentation

Example Application: Reading out Calendar Events

- part of a virtual human systems project
- relatively long utterances:
 - example: play ReferenceExample1.aiff "your appointment on Wednesday, 4. April, 10 am to 12 pm, titled Lecture Linguistics has been rescheduled to Friday, 6. April, 12 pm to 2 pm."
- 6-7 chunks of information

Advantage of iNLG+iSS: Processing Time

- system response time (i.e. processing until audio onset) is crucial in an interactive environment
- a non-incremental system must perform all processing utterance-initially
- an incremental system can *fold* most processing time into delivery time

Results for Utterance Onset Timing

processing step	non-incr.	incremental
NLG	361	52
Synth. (ling. processing)	217	222
Synth. (HMM & vocoding)	1004	21
Total	1582	295

averaged over 9 stimuli, time in milliseconds

- iNLG and iSS can start output much faster than non-incremental processing
- (linguistic pre-processing is not yet incrementalized)

Evaluation of Adaptive Behaviour

- lowest hanging fruit: deal with intermittent noise (e.g. to be able to use this next to a busy street)
 - at random intervals, noise is played
- simple behaviours to cope with noise:
 - ignore the noise, continue speaking (baseline A)
 - stop audio, continue after end of noise (baseline B)

• example: play {A,B}5.aiff

Adaptation Strategies

- 1. "high-level": repetition (of selected chunks)
- 2. prosodic adaptation to noise
- 3. incremental NLG allows for dynamic, adapted creation of later sub-utterance chunks
 - adaptation to state happens in both MCP and MPP:
 - MCP MPP
 - which IMPT next?
 - repair/comment?

 influence generation parameters, such as verbosity, redundancy

Application: Adaptive Behaviour

- simple behaviours to cope with noise:
 - ignore the noise, continue speaking (baseline A)
 - stop audio, continue after end of noise (baseline B)
- adaptive behaviour:
 - stop delivery at the end of current word,
 - restart adapted phrase after noise (iNLG+iSS)

• example: play C5.aiff

User Study

- 9 stimuli × 3 conditions (A, B, iNLG+iSS)
- Q: "I found the behaviour of the system in this situation as I would expect it from a human speaker"
- 12 subjects, 7-point Likert scale

- > highly significant preference for incremental system
- → no difference between settings A and B

→ stopping audio did not improve user ratings !!

Conclusion

- we present a method for incremental NLG
- we present a system for incremental speech synthesis
 - just-in-time, low-latency, low overhead for changes
 - general purpose, open-source
- show performance in interactive environment
 - radically reduced system onset time
 - adaptation to intermittent noise
 - highly preferred by human listeners

Future Work

- research question: *ideal* granularity for NLG and iSS
- further develop mid-level incremental structure & processing for improved prosody production
 - also incrementalize the HMM state selection (which currently uses decision tree features that look into the future – however, is this necessary?)
- extend system to handle intra-utterance user feedback, interruptions, ...

Thank you ! Questions and Comments ?

Thank you very much for your attention.

Prosodic Quality of Incremental Speech Synthesis

Advantages of iSS: Computational Costs

Speech Synthesis is fast, why not re-do it repeatedly?

- it may be fast on the server, but it's still slow on your phone
 - repeating drains the battery more than necessary
- you need a notion of how to align the old and the new synthesis – that's at least as difficult as what we're doing

Adaptation Used in the System

- Re-synthesis in new context results in utteranceinitial prosody
- Details on NLG adaptation in the paper