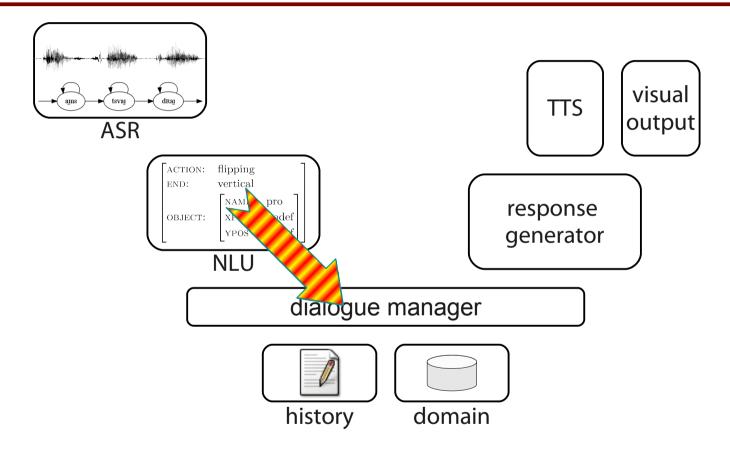
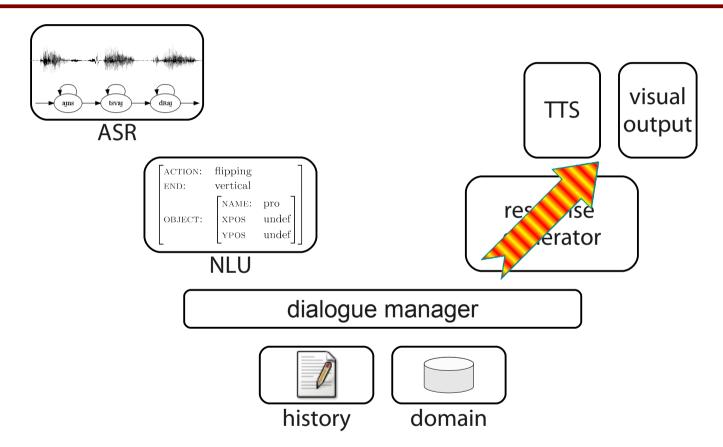
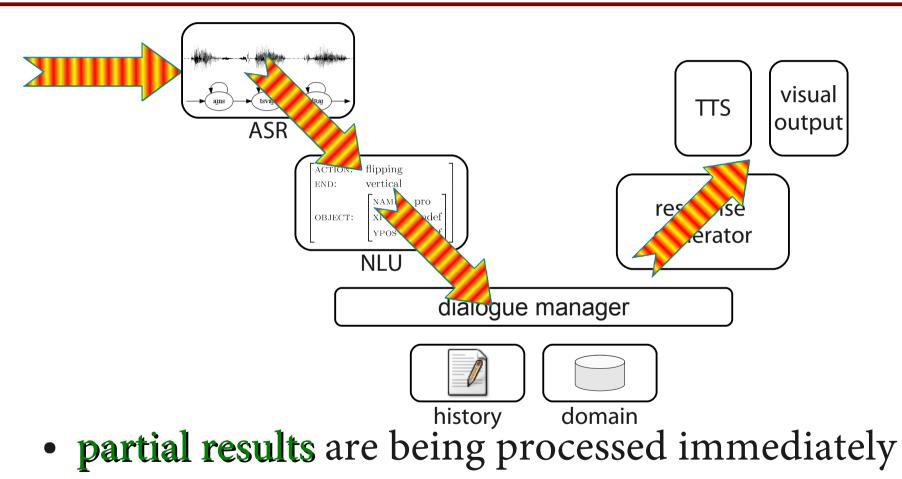
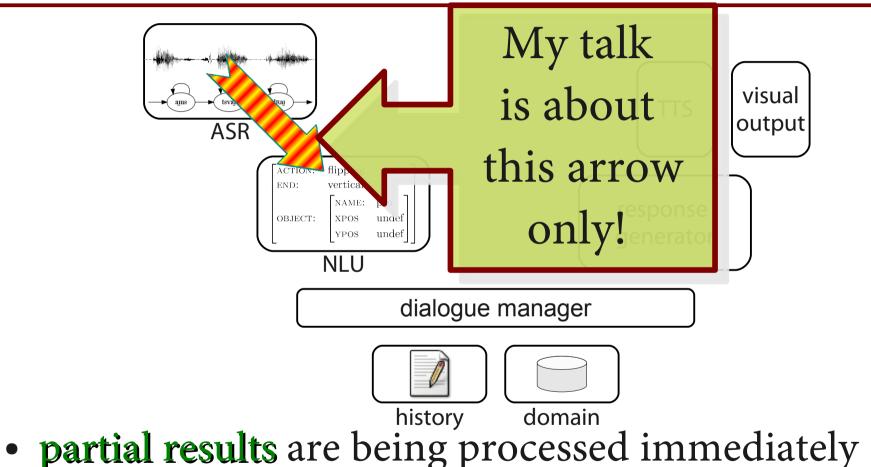

Assessing and Improving the Performance of Speech Recognition for Incremental Systems



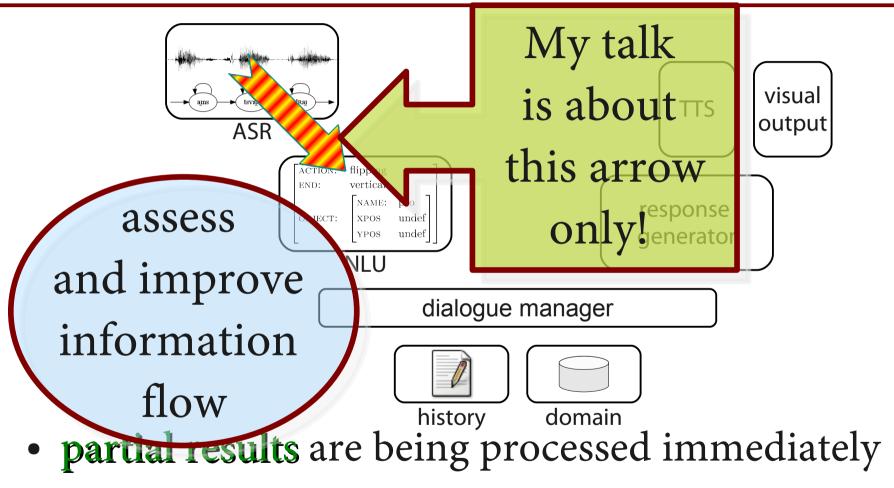

T. Baumann, M. Atterer, D. Schlangen

timo@ling.uni-potsdam.de http://www.ling.uni-potsdam.de/~timo




• no reaction before the user finishes talking

Context: **Incremental** Spoken Dialogue Systems


• reaction is quicker, back-channels are possible

Context: **Incremental** Spoken Dialogue Systems

• reaction is quicker, back-channels are possible

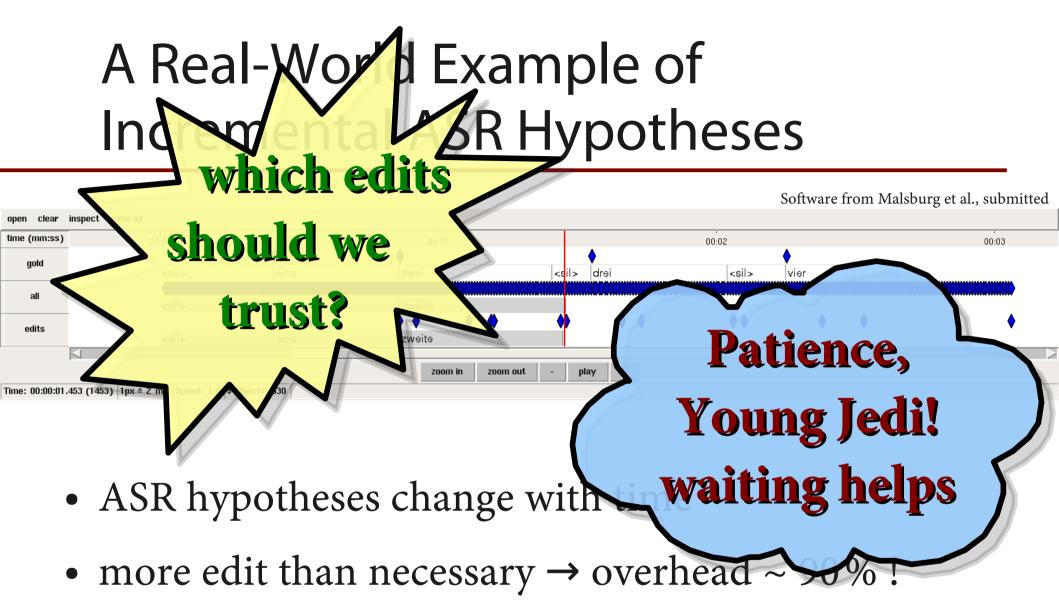
Context: **Incremental** Spoken Dialogue Systems

• reaction is quicker, back-channels are possible

A Real-World Example of Incremental ASR Hypotheses

												Software from	n Malsb	urg et al., sub	mitted
open clear	inspect sa	we as													
time (mm:ss)				(1 DO:00)0:01			00:02			
gold					<sil></sil>	eins		zwei		<sil></sil>	drei		<sil></sil>	vier	
all					<sil></sil>	ein									
	\triangleleft														
						zoom in	zoom out	-	play +						
Time: 00:00:00.	956 (956) 1	px ≙ 2 ms 5	Speed: 1.0	#Objects: 330											

• ASR hypotheses change with time (open video)


A Real-World Example of Incremental ASR Hypotheses

														Softv	vare fi	rom N	/Ialsburg et al., su	bmitte	ed .
open clear	inspect say	ve as																	
time (mm:ss)		 00:0	0			00:01						00:0	12				00:1		
gold		¢	sil>		eins	♦ zwei		<5	il>	¢ drei			<sil></sil>	♦ vier					
all		e e	sil>		ein s	zweite													
edits		e e	sil>		♦♦♦ ♦ eins	♦ ♦ zweite	♦ ♦	•		♦	♦		♦ ♦		♦	♦		♦	
	\triangleleft																		\triangleright
						zoom	n in zoom o	out -	pla	ay +									
Time: 00:00:01.	.453 (1453) 1	1px ≏ 2 m:	Speed: 1.0	#Objects: 3	30														

- ASR hypotheses change with time
- more edit than necessary → overhead ~ 90% !
 - 90% of a consumers work will be **useless**

- ASR hypotheses change with time
- more edit than necessary \rightarrow overhead ~ 90% !

• reduce overhead, sacrifice some timeliness

A Real-World Example of In R Hypotheses which edits

Software from Malsburg et al., submitted

open ciea	inspect save as						
time (mm:ss)	00	1):00		00:01	00:0	2	00:03
gold			eins		<sil> drei</sil>	<sil> vier</sil>]
all			eins	zweite			
edits		<sil></sil>	♦ ♦♦ eins	zweite	• • •	** * *	•
smooth8		<sil></sil>	eins	zwei	•	* *	♦
Time: 00:00:01.	453 (1453) 1nx ≘ 2 n	ns Speed: 1.0 #Objects:	330	zoom in zoom out -	play +		

- ASR hypotheses change with waiting helps
- more edit than necessary \rightarrow overhead $\sim -\infty$?
- reduce overhead, sacrifice some timeliness

Content: Basically we ...

- first say: "incremental behaviour is **important**!"
- define measures to capture incremental behaviour
- **determine** the incremental behaviour of our ASR
 - there are trade-offs between measures
- develop ways to **manipulate** the behaviour
- balance settings to suit our needs

Descriptive Measures for Incremental ASR

- there are three groups of measures
 - accuracy
 - change
 - timing
- measure against non-incremental ASR as our gold
 - we only measure incremental aspects, overall performance (WER/SER) is measured separately
- we focus on *words* only and ignore *silence markers* (<sil>)

A Reduced Example

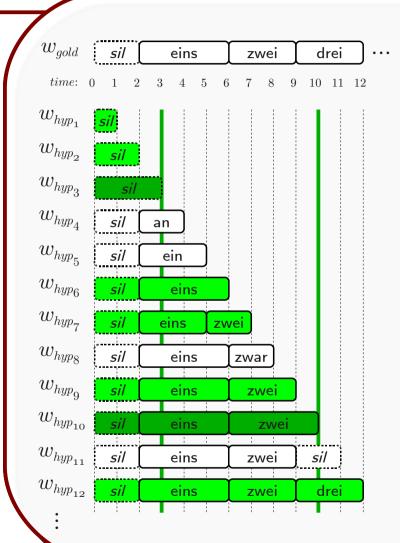
 \oplus (an)

 \oplus (zwei)

 \oplus (drei)

 \ominus (an), \oplus (ein)

 \ominus (ein), \oplus (eins)


 \ominus (zwei), \oplus (zwar)

 \ominus (zwar), \oplus (zwei)

w_{gold}		sil			ein	s			zwei			drei			••
time:	0	1	2	3	4	5	6	6 7	7	8	9	10	11	12	
w_{hyp_1}		sil													
w_{hyp_2}		sil													
w_{hyp_3}		<u>.</u>	sil												
w_{hyp_4}		sil	ĺ	an											
w_{hyp_5}	-	sil	Ì	e	in										
w_{hyp_6}		sil	ĺ		ein	s		Ì							
w_{hyp_7}		sil	Ì	e	ins		zv	vei)						
w_{hyp_8}		sil	ĺ		ein	s		Zv	var)					
w_{hyp_9}		sil	ĺ	i	ein	s			zw	ei					
$w_{hyp_{10}}$		sil			ein	s			Z	we	i				
$w_{hyp_{11}}$		sil	ĺ		ein	s		r—	zw	ei	<u>)</u>	sil	'		
$w_{hyp_{12}}$		sil	Ì		ein	s			zw	ei	Ţ	d	rei		
•	1	1	ł	1	1	1		:	1	1	;	1	1	1	

- w_{hyp_t} is the word sequence hypothesized at time t
- two dimensions:
 - time we reason about: →
 - time we reason at: ↓
- w_{gold} is final hypothesis

Accuracy Measures

Correctness of hypotheses **r-correct:** $w_{hyp_t} = w_{gold_t}$ **p-correct:** w_{hyp_t} prefix-of w_{gold_t}

(p-correctness adjusts for ASR lag at word boundaries)

Change Measure

/							
	w_{gold}	sil	eins	zwei	drei		
	time:	$\begin{array}{ccc} 0 & 1 & 2 \\ \hline \end{array}$	(a) (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	$\overset{6}{\oplus}(\overset{7}{\operatorname{zwei}}\overset{8}{\operatorname{wei}})$	$\overset{9}{\oplus} \overset{10}{(\text{drei})} \overset{11}{$	12	
	w_{hyp_1}	sil					
	w_{hyp_2}	sil					
	w_{hyp_3}	sil					
	w_{hyp_4}	sil	an				⊕(an)
	w_{hyp_5}	sil	ein				\ominus (an), \oplus (ein)
	w_{hyp_6}	sil	eins				$\oplus(ext{ein}), \oplus(ext{eins})$
	w_{hyp_7}	sil	eins	zwei			⊕(zwei)
	w_{hyp_8}	sil	eins	zwar			\oplus (zwei), \oplus (zwar)
	w_{hyp_9}	sil	eins	zwei			\oplus (zwar), \oplus (zwei)
	$w_{hyp_{10}}$	sil	eins	ZWE	ei		
	$w_{hyp_{11}}$	sil	eins	zwei] sil		
	$w_{hyp_{12}}$		eins	zwei	drei		⊕(drei)
		1 1				1	

- changes on the right
- add, delete or revise

- ideally: one *add* per word
- in fact: edit overhead

• **EO** = $\frac{|unnecessary\ edits|}{|edits|}$

Change Measure

w_{gold}	sil	eins	zwei	drei ···
time:	$\begin{array}{ccc} 0 & 1 & 2 \\ \hline \end{array}$	(a) (a) (a) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	$ \stackrel{6}{\oplus} (\stackrel{7}{\text{zwei}}) \stackrel{8}{\oplus} (\stackrel{9}{\text{zwei}}) $	● 10 11 12 ⊕(drei)
w_{hyp_1}	sil			
w_{hyp_2}	sil			
$w_{\scriptscriptstyle{hyp}_3}$	sil			
$w_{\scriptscriptstyle{hyp}_4}$	sil	an		
$w_{\scriptscriptstyle hyp_5}$	sil	ein		
w_{hyp_6}	sil	eins		
w_{hyp}_7	sil	eins	zwei	
w_{hyp_8}	sil	eins	zwar	
$w_{\scriptscriptstyle hyp_9}$	sil	eins	zwei)
$w_{hyp_{10}}$	sil	eins	zwei	
$w_{hyp_{11}}$	sil	eins	zwei	sil
$w_{hyp_{12}}$	sil	eins	zwei	drei

ideally: 3 edits

actually: 11 edits unwanted: 8 edits

EO: 8/11 = 72 %

⊕(drei)

⊕(an)

⊕(zwei)

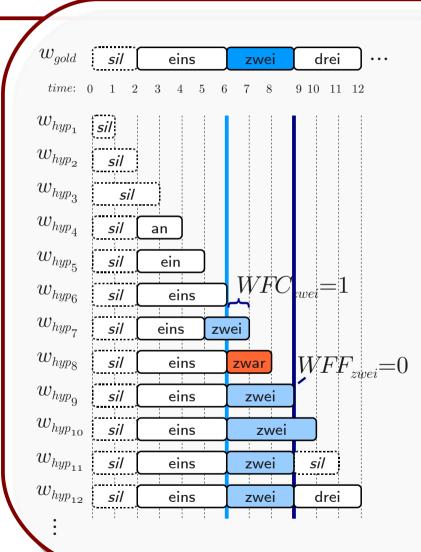
 \ominus (an), \oplus (ein)

 \ominus (ein), \oplus (eins)


 \ominus (zwei), \oplus (zwar)

 \ominus (zwar), \oplus (zwei)

Edits are bad:


- edits lead to unnecessary processing of a consumer
 - less edits mean less processing
- → we would like to reduce the edit overhead
 - → by deferring or suppressing edits
- deferring edits leads to delays, deteriorating *timing measures* ...

Timing Measures

- when do we find out about a word?
 - word first correct: WFC
- when do we become certain about a word?
 - word first final: WFF
- this is per word
 - → averages are important

Timing Measures

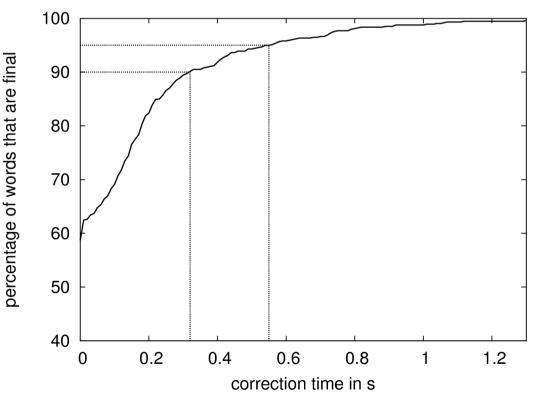
for "zwei":

first correct at t = 7first final at t = 9**WFC**_{zwei} = 1 **WFF**_{zwei} = 0

similarly for all other words

Timing Measures

- depending on the use-case we may care for ...
 - if we want to **assume** as soon as possible \rightarrow low **WFC**
 - if we want to **know** as soon as possible \rightarrow low **WFF**
- deferring edits means two things:
 - higher WFC (as the lag passes through)
 - tendency for lower WFF (if we eliminate wrong edits)


Base Measurements

- **r-correct**: 30.9%, **p-correct**: 53.1%
- edit overhead: 90.5%
 - most (9 of 10) edits are unnecessary!
- WFC: mean=0.276s, stddev=0.186s, median=0.230s
 - average at ³/₄ of the average word length
- **WFF**: mean=0.004 s, stddev=0.286 s, median=-0.06 s
 - final around word end (on average)

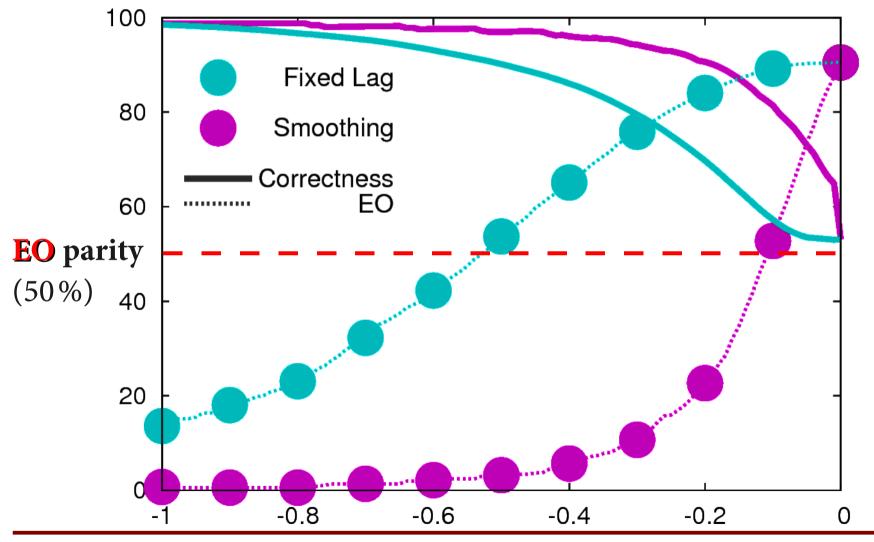
Sphinx-4 for German with statistical LM, WER = 18,8%, mean word length 0.378s

Certainty Considerations

- the correction time for a word is **WFF**-WFC
- 58.6% of all words are immediately correct
- we can calculate the degree of certainty for given hypothesis ages
- e.g. if a correct hyp. lasts for 0.55 s, we can be certain (95%) that it will not change anymore

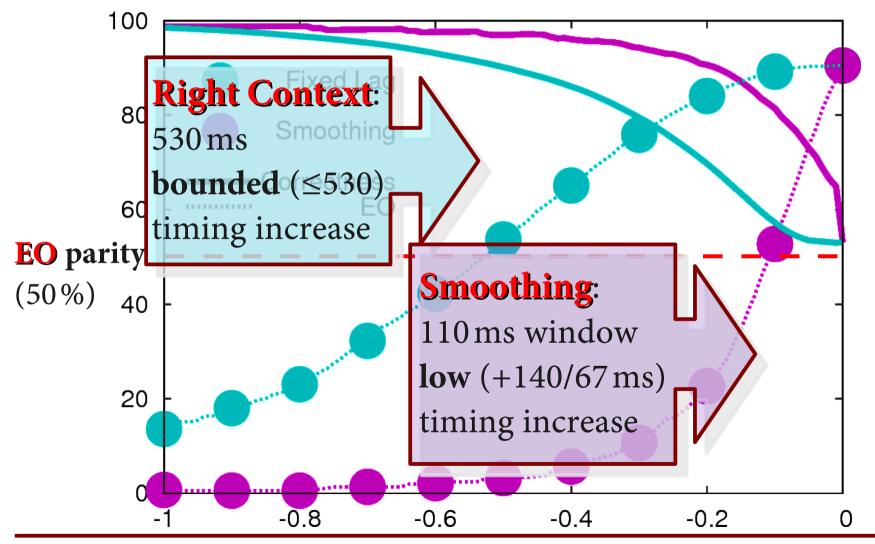
Improving Incremental ASR

- our primary goal is to reduce edit overhead
- ... by deferring or suppressing edits
 - deferring edits will always hurt WFC
 - suppressing edits may even improve WFF
 - the final (non-incremental) result does not change
- > only trust older parts of hyps. (Right Context)
- > only trust older edits (Message Smoothing)


Right Context to Improve Incremental Performance

- much **jitter** is **at the right end** of the hypotheses
- → at time *t* only evaluate hyp_t up to $t-\Delta$
- we need to take this into account for correctness:
 - *fair* r-correct: $w_{hyp_tt-\Delta} = w_{gold_{t-\Delta}}$
- WFC increases with Δ , WFF increases $\leq \Delta$
- we can **predict the future** with negative Δ
 - e.g. fair r-correctness down 50% at 100ms in the future

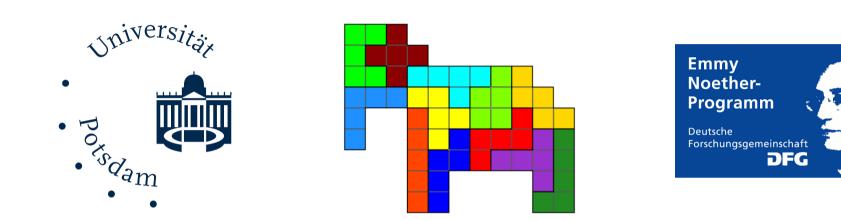
Message Smoothing to Improve Incremental Performance


- most bad edits only last for a short while
 - "zwei" → "zwar" → "zwei"
- > hold back edits until they reach a certain age
 - only output if they don't die before maturing
- multiple short edits of a word may delay messages:
 - WFC may grow without fixed bounds occasionally
 - probable resolution/mitigation: future work allow for some kind of "majority smoothing"

Right Context vs. Smoothing

delay in s (scale shows larger right contexts towards the left)

Right Context vs. Smoothing



delay in s (scale shows larger right contexts towards the left)

Conclusion

- incremental behaviour is **important** !
- measures for incremental aspects of ASR
 - timing, overhead → trade-offs between them
- methods to improve incremental aspects
 - analysis of the methods' characteristics on our ASR
 - combine? majority smoothing? → future work
- determine **operating point** based on the analysis
 - e.g. overhead: $^{9}/_{10} \rightarrow \frac{1}{2}$, WFC/WFF: +140/67 ms

Thank You!

Acknowledgements:

Michaela Atterer and David Schlangen, my collaborators DFG for funding (Emmy Noether programme)

Setup and Corpora

- Sphinx-4 (Walker et al., 2004), LexTree decoder, trigram LM
- KCoRS (IPDS, 1994) and OpenPento as training
- 85 semi-spontaneous utterances as test-set
- WER: 18.8%, SER: 68.2%
- average lengths of words: 0.378 s, utterances: 5.5 s
- → we disregard leading and trailing pauses in the evaluation of incremental performance

Variations of the Setup

- to test the stability of incremental measures, we
 - varied LM weights (to test LM influence) and
 - degraded audio quality (to test AM influence)
- WER changes radically with different LM weights (and especially with degraded audio)
- incremental measures (correctness, edit overhead) remain remarkably stable