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Abstract
In simultaneous interpreting, human experts incrementally
construct and extend partial hypotheses about the source
speaker’s message, and start to verbalize a corresponding
message in the target language, based on a partial transla-
tion – which may have to be corrected occasionally. They
commence the target utterance in the hope that they will be
able to finish understanding the source speaker’s message and
determine its translation in time for the unfolding delivery.
Of course, both incremental understanding and translation by
humans can be garden-pathed, although experts are able to
optimize their delivery so as to balance the goals of minimal
latency, translation quality and high speech fluency with few
corrections. We investigate the temporal properties of both
translation input and output to evaluate the tradeoff between
low latency and translation quality. In addition, we estimate
the improvements that can be gained with a tempo-elastic
speech synthesizer.

1. Introduction
Today’s speech-to-speech translation solutions are a long way
from transparent and ubiquitous universal translators as envi-
sioned in science fiction literature (e. g. [1]), for a multitude of
reasons. One of the shortcomings is translation latency, which
in speech can be described as the latency between when a
concept can be grasped from listening to the source utterance
and producing it as part of the target utterance. For swift
and seamless communication across language barriers, low
translation latency is key.

Incremental processing [2] is a technical means to imple-
ment interactive speech processing systems for online speech
recognition [3], [4], [5], language understanding and genera-
tion [6], for speech synthesis [7]. Incremental processing has
also been successfully applied to speech-to-speech translation
(e. g. [8]), where it helps to bring down processing latency in
an integrated system.

An important aspect of incremental processing (and hence,
incremental translation) is the granularity at which material is
being added. A fine granularity of processing is a precondition
to low latency, as smaller units can more quickly be passed on

to a next module. Previous work on incremental translation
has focused on phrasing (based on intonation and somewhat
related to meaning units) for translation [9], as phrases can
easily be passed on to speech synthesis as one unit. Recently,
incremental speech synthesis is progressing well at a word-
by-word granularity, if some additional boundary and finality
information is provided [10], [11].

In building language processing systems, joint analysis
and optimization across module boundaries often greatly im-
proves performance. The combination of speech recognition
with understanding (e. g. [12]) or translation (e. g. [13]) is
quite common, but this is less often done for the output side.
(One notable exception is joint optimization of natural lan-
guage generation and TTS [14], however not in an incremental
setting.)

In this paper, we analyze the timing properties of source
and target speech in an incremental machine translation set-
ting in order to evaluate the improvements possible when
combining word-by-word incremental machine translation
with speech synthesis, particularly with respect to delivery
latency. We do not yet actually employ fully incremental
synthesis but focus our analysis on the advantages of such a
synthesis technique in this contribution.

The remainder of this paper is structured as follows: in
Section 2, we describe the interplay of incremental translation
and the temporal unfolding of source and target speech based
on an example and describe the basic strategies and evaluation
metrics used in the study. In Section 3, we describe our corpus
and experiment setup and present and discuss results for our
basic strategies in Section 4. In Section 5, we look at advanced
delivery timing that makes use of the flexibility that is made
possible by incremental, just-in-time tempo-elastic speech
synthesis. We summarize and conclude our work in Section 6
and outline future work in Section 7.

2. Timing Aspects of Simultaneous
Interpreting

In a perfect world, a translator in transparent simultaneous
interpreting will be able to come up with a perfect partial trans-
lation as soon as the corresponding source language word has



SRC: The | captain | waved | me | over | . |
TG1: der/die*
TG2: der Kapitän
TG3: Der Kapitän winkte
TG4: Der Kapitän winkte mich
TG5: Der Kapitän winkte mich über*
TG6: Der Kapitän winkte mich zu sich.

Figure 1: Depiction of successive incremental translation
results (TGn) as words of the source utterance (SRC) are
being processed. Wrongly translated words are marked by
an asterisk(*). The challenge: given a (tokenized) input ut-
terance, output should ideally commence immediately when
correct translation results become available (but not before).
Both source and target delivery durations must be taken into
account.

been spoken by the source speaker.1 Even in this case, the
speech output component for incremental translation should
consider when to start speaking rather than starting to speak
immediately, as words in the target language may have a dif-
ferent duration than words in the source language; thus, the
system could run out of words to speak, which would result in
unnatural intermittent pauses during the utterance. Consider
the example in Figure 1: here, even if the initial article is
correctly translated to German “der”, speech delivery should
not commence immediately to avoid unnatural pauses if the
next source language word might take longer to be uttered by
the source speaker.2 In Figure 1, translation output is purpose-
fully aligned to show when respective words should ideally be
delivered by synthesis in order to result in continuous speech
output with minimal latency.

In an imperfect world, incremental translation will some-
times produce output that must later be revised (these words
are marked with an asterisk in the figure; as luck has it, Google
MT translates “the” to German “die”, the female and plural
form of the definite article, which turns out to be wrong in
the example). Of course, a simultaneous translator should
avoid speaking translations that later turn out to be wrong.
Instead, it should speak with a high-enough latency to avoid
short-range mistakes such as the ones shown in the figure.

Notice however, that the necessary delay to accommo-
date differences in delivery speed and intermittent translation
errors can only be determined post-hoc, after the full utter-
ance has been consumed. This of course defeats the goal of
concurrent target language delivery.

We will present an analysis of the necessary delays per
utterance under various translation conditions in Section 4.
However, we believe that long-enough latency to account for
all possible changes in translation cannot be the sole solution.

1Of course, our processing could also be concerned with sub-word units.
However, that case would be conceptually similar to word-by-word process-
ing (but potentially giving better results at the cost of higher complexity);
this direction will not be considered further in the present work.

2This problem can be somewhat reduced by hesitation and/or lengthening
capabilities: “de..r Kapitän . . . ”).

Table 1: Some key statistics of the corpus (timings as de-
termined by TTS; English reference data as well as token
durations for de/es translations).

count duration in seconds
total mean stddev median

utterances 1436 5.14 3.36 4.31
phrases (as determined by TTS) 3099 2.39 1.64 1.95
tokens 26890 .276 .172 .205
de token # and durations (in s) 27800 .328 .203 .25
es token # and durations (in s) 27275 .307 .195 .233

In order to account for long-range garden-pathing in trans-
lation (in which case translation should actively change its
mind, just like a human in this situation), simply increasing
delays is not the answer.

For this reason, we propose that automatic simultaneous
interpreting modules, just like human experts, must have re-
covery capabilities, which enable them to cope with situations
in which already-delivered parts of a translation should be re-
voked and replaced by a different translation. Human experts
use and combine various strategies to cope with the problem
[15]. We experiment here with the simplest possible solution
of dealing with changes: we ignore all changes to words that
have already or are currently being spoken. This causes the
translation performance to deteriorate, given a fixed delay
(similarly to [16]), which will also be analyzed in Section 4.

Finally, one intuitively important strategy of human ex-
perts is to vary the latency between input and output by vary-
ing speech delivery tempo. We report on our initial progress
in determining overall latency and reducing it in Section 5.

3. Corpus and Experiment Setup
We use the IWSLT 2011 test set of the TED talks corpus as
provided by the Web Inventory of Transcribed and Translated
Talks [17]. As translation quality and stability may depend
to a large extent on languages, we include analyses for three
language pairs: en → de, en → es, and de → en.3

We tokenize the respective source material with WASTE
[18], using the included models for German and English. We
then feed each of the utterances to standard, per-se non-incre-
mental translation systems in a restart-incremental fashion:
first translating just the first token, then the first two, then
the first three, and so on, ending with the full utterance. This
results in a large processing overhead and may confuse the
translation system which may consider each input as a full
utterance (while we are mostly sending partial utterances)
– however it is a simple and reliable way of making non-
incremental processors incremental. We decided to include
all non-word tokens, as they give important clues to translation
systems that are not trained on spoken data and are necessary
to provide comparable BLEU score results on the TED data.

3Notice that we use the provided datasets ‘in reverse’ for de → en
translation, ignoring the fact that that the original source becomes the target
language in this experiment.
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Figure 2: Histograms of per-sentence output delays (in s) that are necessary to accommodate all translation hypothesis changes.

As translation systems, we use both the Google MT web
interface4, and for Spanish, we also also use an AT&T propri-
etary SMT system [19].

Finally, we add word-level timing information to the
source language and translation output using text-to-speech
timing predictions5 provided by MaryTTS [20] including re-
cent additions for Spanish speech synthesis.6 As our setup
does not generate timings for some final punctuation, we use a
flat duration estimate of 200 ms per punctuation in these cases.
These 200 ms can be seen as the latency for end-of-utterance
detection if our system were to be combined with incremental
speech recognition in the future. Some key statistics about
the corpus are compiled in Table 1.

As it turns out, overall German and Spanish speech du-
ration are 23 % and 13 % higher respectively than overall
English speech duration. A similar difference remains when
using gold-standard German transcriptions instead of the MT
output. Whether, however, this difference is due to a faster
speech rate of the English voice, or due to expressive differ-
ences in the language, remains open. In any case, we have not
controlled for this difference in the following experiments.

4. Evaluation of Basic Measures
For a time-aligned source sentence and its corresponding
time-aligned incremental translation output that represents
the final target language sentence, we find the minimum nec-
essary delay at which the target sentence can be delivered
such that the partial translation hypotheses always match the
final target language sentence (i. e., the synthesis would never
be triggered to start saying a word that is later replaced by a
different word during incremental translation).

Using the incremental evaluation toolbox intelida [21], we
compute the delay that is necessary in order to have all finally
chosen target language words available before their scheduled

4http://translate.google.com/ with the help of some PHP-
based automation code.

5Of course, we could have extracted more precise source language timing
information from TED videos, but results would likely be similar and only
be available for English as source language.

6We thank Marcela Charfuelan for making a Spanish voice and linguistic
resources available.

delivery starts, and without intermittent interruptions from
synthesis running out of words to speak. Delay histograms for
all translation directions and systems are shown in Figure 2,
and also indicate mean (vertical lines) as well as boxplots
for median, 25/75 % (box) and 5/95 % (whiskers) quantiles.
Notice that these delays are optimistic, i. e. they do not take
into account translation time.

As can be seen in the histograms, the necessary delays are
quite short on average, and, in particular, necessary delays for
the majority of sentences are shorter than the average phrase
length (cmp. Table 1), indicating that a word-level granularity
(instead of phrase-level granularity as used in [9]) may be
advantageous for simultaneous interpreting.

Also, we see that the histograms for the Google MT sys-
tem have a very long tail with some necessary delays of
over 10 seconds. On closer observation, we noticed that the
Google MT system often (but not only) changes opinion when
the final punctuation is added. We examined some of these
sentence-final changes in detail and saw no clear tendency
that they actually lead to an overall improvement of the result-
ing translation. In contrast, our own system, which is more
strongly restricted in the sub-phrase reordering stage, results
in a more normal distribution of necessary delays. This makes
our own system more suitable for simultaneous interpreting,
although the systems’ translations and resulting BLEU scores
differ, as shown below. Whether delay histograms would look
more similar at equal BLEU performance levels must be left
to speculation.

Finally, we notice much longer delays for de → en than
for en → de translations. There may be several reasons for
this: Firstly, German sentences often contain the verb late in
the sentence, whereas English more stringently follows the
SVO principle. As a consequence, the verb cannot be correctly
translated until late in the sentence and, when it finally occurs,
it may result in a change of the material that came before.
Secondly, we mentioned above that our TTS generates slower
speech for German (and Spanish) than for English. This
phenomenon may skew the histograms in opposite directions
when translating in opposite directions and may also be the
cause for the longer necessary delays when translating from
German. However, the histogram does not tail off as quickly

http://translate.google.com/
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Figure 3: Performance penalty for given initial delays under
all translation conditions.

as it does with English as source language, which could not
be explained by differing TTS tempos.

Of course, latency is just one aspect of simultaneous in-
terpreting, the other major factor being translation quality.
Beyond the non-incremental translation quality of the transla-
tion systems and corpora used, we have also implemented a
very simple method for generating incremental translations
under time-pressure (i.e., in simultaneous interpreting), where
some words that are later overridden by a more informed
translation, are already being spoken. In this case, our system
simply ignores the change and re-aligns the new translation
hypothesis using the Levenshtein algorithm [22].

Figure 3 shows translation performance (in terms of
BLEU scores) of the different translation conditions for non-
incremental (horizontal dashed lines) translation, which forms
a natural upper bound for translations that are restricted in
changing their hypotheses to different latency settings.

As can be seen in the figure, overall translation perfor-
mance differs between translation systems, language pairs,
and direction. Specifically, Google’s en → de translations
lags behind and differs substantially from the reverse trans-
lation direction, or en → es. Our own en → es system
performs poorly as compared to Google’s. Our system was
trained on different domain material, which may limit its per-
formance on TED data; we plan to re-train our models in time
for the final version of this paper.

Aside from translation quality, the performance penalty
from limited-delay processing also differs substantially: our
own system approaches its non-incremental performance
rather quickly, while Google’s systems require longer delays
to reach their performance ceiling – although it must be noted
that Google outperforms our system even with short delays.

Quite importantly, we note that de → en translation suf-
fers most from long delays, to an extent that incremental
performance is lower than en → es, even though the non-
incremental performance is higher, de → en only approaches
non-incremental performance with a startup delay of around
4.8 seconds. We believe this property to stem from linguis-
tic properties of German, which are not well-handled by our
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Figure 4: Resulting final latencies for given initial delays.

overly simplistic incrementalization approach.

5. Considering Speech Delivery Tempo
Words in the target language can only begin to be realized
when the corresponding source language word has been com-
pletely delivered and translated. As words have different
inherent durations, an incremental system may intermittently
run out of material to speak, waiting for the next source lan-
guage word to be completed and translated. As a consequence,
the actual delay of the system as implemented is often higher
than the initial startup delay, when the system has to wait
for more translated material to become available. In addi-
tion, the speaking duration of the remaining words in the
target language once the source utterance and translation have
completed, must also be considered.

Figure 4 shows the actual resulting latency of target utter-
ance completion after source utterance completion, at various
initial delay settings. As can be seen in the figure, the re-
sulting latency is substantially higher than the initial delay.
There are two reasons for this: (a) target utterance delivery
still needs to finish after the source utterance has already been
completed; and (b) the delay may have to be increased in-
termittently, when source language delivery is too slow to
sustain translation and delivery in the target language. In our
experiments, we observe both phenomena, even though (a) is
prevalent.

In all cases, latency is more than a second higher than
the startup delay, which forms a natural lower bound for
latency. We also notice that latencies increase more than
initial delays for all but the de → en condition. This may be
due to synthesis delivery speeds differing across languages.
While de → en is impaired most by low delays (see Figure 3),
it also accommodates longer delays in terms of the resulting
latencies.

As mentioned previously, one goal of incremental speech
synthesis is to have immediate control over delivery, and
specifically, delivery timing. In Figure 4, we also plotted as
dotted lines the resulting latencies if speech synthesis is sped
up by 10 % starting at the word delivered after the source



language utterance has been completed. We notice a slight
latency reduction across languages, of 4-5 % on average, or
100-200 ms, which may already be noticeable in applications.

We believe that somewhat higher speed-ups may be
tolerable for listeners, which will lead to correspondingly
larger improvements, and we plan to confirm this in listen-
ing/understanding experiments.

The second source of latency is delays that are increased
during the utterance as the system runs out of target material.
These additional delays can be substantial, especially for short
startup delays. For example in the en → de condition, the
additional average delay amounts to about 288 ms (179 ms)
for a startup delay of 500 ms (respectively 700 ms).

We plan to reduce overall latency by bringing down
utterance-internal delays through increasing speech tempo
after the system has to intermittently pause. More generally
speaking, we hope to estimate incremental translation stabil-
ity (similarly to speech recognition stability [5]) and infer a
flexible delay that accommodates more change at times when
translation is particularly uncertain. The flexible delays will
be integrated by varying delivery tempo in the incremental
speech synthesis.

6. Conclusions
We have presented an analysis of incremental speech transla-
tion that takes into account speech delivery timings for both
input and output. We find that, on average, conventional
translation systems that are employed in a restart-incremental
fashion produce their results with relatively low latencies. In
particular, average delays are shorter than the average phrase,
confirming our belief that word-by-word incrementality leads
to better quality/latency trade-offs than phrase-by-phrase in-
cremental systems.

In our experiments, we find that language pairs behave
differently, and that German-to-English translation may be
particularly difficult to perform incrementally. In addition,
we find that our own system, which is quite limited in the
word-reordering stage of translation, does not require as long
delays and approaches its performance ceiling more quickly
with limited delays – however, at the cost of overall lower
performance. We plan to re-train our models with in-domain
data in order to better compare our system with Google’s MT.

In addition, we find that overall latency results from both
the source utterance timing and its translation, and the target
utterance delivery. While we have implemented a simple
solution for the latter issue, we are still exploring how to deal
with the former.

Finally, BLEU scores may be insufficient to judge in-
cremental performance. An incremental translation system
should strategically consider the duration of target language
words in order to “gain time” or to speed up delivery, as re-
quired over the course of an utterance, while remaining easily
understandable. Such word choices may hurt BLEU, as the
“wrong” translation can be chosen, but improve actual system
behaviour.

7. Future Work
As next steps, we will examine stability models for transla-
tions, similar to [5] for speech recognition. Our initial experi-
ments in this direction are promising; however, they require
translation internals which are not available from Google’s
MT. On the other hand, our own translation system is not
trained on in-domain data, and hence delivers poor perfor-
mance.

As we do not believe that a simultaneous interpreting sys-
tem can lag behind to a degree that it “covers” all intermittent
mis-translations, such a system will require an explicit recov-
ery module that is able to rephrase and correct (perhaps using
prosodic marking) already delivered material in a way that
is easy to digest for the user. As such rephrasing cannot be
learned from translation data, we believe this process cannot
be left to the translation module alone.

Finally, we plan to validate the trade-off between transla-
tion quality and latency reduction of our system in a user study.
In order to focus the study on the incremental aspects of the
system, we plan to have participants fill in a multiple-choice
survey about facts conveyed in the translation material. The
timing of answers and their correctness will be informative
regarding the two major aspects of incremental processing,
latency and correctness. In addition, user changes to their
answers should be useful in conveying information about the
stability of the message conveyed.

8. Acknowledgements
The authors would like to thank Marcela Charfuelan for mak-
ing available her MaryTTS extensions for Spanish speech
synthesis, as well as the valuable feedback by the anonymous
reviewers. This work is supported by a Daimler and Benz
Foundation PostDoc Grant to the first author.

9. Bibliography
[1] D. Adams, The Hitchhiker’s Guide to the Galaxy, ser.

The Hitchhiker’s Guide to the Galaxy. Pan Books, Oct.
1979.

[2] D. Schlangen and G. Skantze, “A General, Abstract
Model of Incremental Dialogue Processing,” in Pro-
ceedings of the EACL, Athens, Greece, 2009, pp. 710–
718.

[3] T. Baumann, M. Atterer, and D. Schlangen, “Assessing
and improving the performance of speech recognition
for incremental systems,” in Proceedings of NAACL-
HLT 2009, Boulder, USA, 2009, pp. 380–388.

[4] E. Selfridge, I. Arizmendi, P. Heeman, and J. Williams,
“Stability and accuracy in incremental speech recogni-
tion,” in Proceedings of the SIGDIAL 2011 Conference,
Portland, Oregon: Association for Computational Lin-
guistics, Jun. 2011, pp. 110–119. [Online]. Available:
http://www.aclweb.org/anthology/W/
W11/W11-2014.

http://www.aclweb.org/anthology/W/W11/W11-2014
http://www.aclweb.org/anthology/W/W11/W11-2014


[5] I. McGraw and A. Gruenstein, “Estimating word-
stability during incremental speech recognition,” in
Proceedings of Interspeech, ISCA, Portland, USA, Sep.
2012.

[6] G. Skantze and A. Hjalmarsson, “Towards incremental
speech generation in dialogue systems,” in Proceedings
of SIGdial, Tokyo, Japan, Sep. 2010.

[7] T. Baumann and D. Schlangen, “INPRO_ISS: a com-
ponent for just-in-time incremental speech synthesis,”
in Procs. of ACL System Demonstrations, Jeju, Korea,
2012.

[8] S. Bangalore, V. K. Rangarajan Sridhar, P. Kolan,
L. Golipour, and A. Jimenez, “Real-time incremen-
tal speech-to-speech translation of dialogs,” in Pro-
ceedings of NAACL-HTL 2012, Montréal, Canada, Jun.
2012, pp. 437–445.

[9] V. K. R. Sridhar, J. Chen, S. Bangalore, and A. Conkie,
“Role of pausing in text-to-speech synthesis for simul-
taneous interpretation,” in Proceedings of SSW8, 2013.

[10] T. Baumann, “Decision tree usage for incremental para-
metric speech synthesis,” in Proceedings of the Inter-
national Conference on Audio, Speech, and Signal Pro-
cessing (ICASSP 2014), Florence, Italy, May 2014.

[11] ——, “Partial representations improve the prosody of
incremental speech synthesis,” in Proceedings of Inter-
speech, 2014.

[12] A. Deoras, R. Sarikaya, G. Tur, and D. Hakkani-Tur,
“Joint decoding for speech recognition and seman-
tic tagging,” Annual Conference of the International
Speech Communication Association (Interspeech),
2012. [Online]. Available: http : / / research .
microsoft . com / apps / pubs / default .
aspx?id=183552.

[13] H. Ney, “Speech translation: coupling of recognition
and translation,” in Acoustics, Speech, and Signal Pro-
cessing, 1999. Proceedings., 1999 IEEE International
Conference on, IEEE, vol. 1, 1999, pp. 517–520.

[14] C. Nakatsu and M. White, “Learning to say it well:
reranking realizations by predicted synthesis quality,”
in Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
Sydney, Australia: Association for Computational Lin-
guistics, 2006, pp. 1113–1120. DOI: 10 . 3115 /
1220175.1220315. [Online]. Available: http:
//www.aclweb.org/anthology/P06-1140.

[15] V. K. R. Sridhar, J. Chen, and S. Bangalore, “Corpus
analysis of simultaneous interpretation data for improv-
ing real time speech translation.,” in INTERSPEECH,
2013, pp. 3468–3472.

[16] H. Shimizu, G. Neubig, S. Sakti, T. Toda, and S. Naka-
mur, “Constructing a speech translation system using
simultaneous interpretation data,” in Proceedings of
the 10th International Workshop on Spoken Language
Translation (IWSLT 2013), Heidelberg, Germany, 2013,
pp. 212–218.

[17] M. Cettolo, C. Girardi, and M. Federico, “Wit3: web
inventory of transcribed and translated talks,” in Pro-
ceedings of the 16th Conference of the European Asso-
ciation for Machine Translation (EAMT), Trento, Italy,
2012, pp. 261–268.

[18] B. Jurish and K.-M. Würzner, “Word and sentence
tokenization with hidden markov models,” JLCL, vol.
28, no. 2, pp. 61–83, 2013.

[19] V. kumar Rangarajan sridhar, S. Bangalore, A. Jimenez,
L. Golipour, and P. Kolan, “SPECTRA: a speech-to-
speech translation system in the cloud,” IEEE Inter-
national Conference on Emerging Signal Processing
Applications, Tech. Rep., 2012.

[20] M. Schröder and J. Trouvain, “The German text-
to-speech synthesis system MARY: a tool for re-
search, development and teaching,” International Jour-
nal of Speech Technology, vol. 6, no. 3, pp. 365–377,
Oct. 2003, ISSN: 1572-8110. DOI: 10 . 1023 / A :
1025708916924.

[21] T. von der Malsburg, T. Baumann, and D. Schlangen,
“TELIDA: A Package for Manipulation and Visuali-
sation of Timed Linguistic Data,” in Proceedings of
SigDial 2009, London, UK, 2009.

[22] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” Soviet Physics –
Doklady, vol. 10, no. 8, pp. 707–710, Feb. 1966.

http://research.microsoft.com/apps/pubs/default.aspx?id=183552
http://research.microsoft.com/apps/pubs/default.aspx?id=183552
http://research.microsoft.com/apps/pubs/default.aspx?id=183552
http://dx.doi.org/10.3115/1220175.1220315
http://dx.doi.org/10.3115/1220175.1220315
http://www.aclweb.org/anthology/P06-1140
http://www.aclweb.org/anthology/P06-1140
http://dx.doi.org/10.1023/A:1025708916924
http://dx.doi.org/10.1023/A:1025708916924

	 Introduction
	 Timing Aspects of Simultaneous Interpreting
	 Corpus and Experiment Setup
	 Evaluation of Basic Measures
	 Considering Speech Delivery Tempo
	 Conclusions
	 Future Work
	 Acknowledgements
	 Bibliography

