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Abstract Automatic speech recognition (ASR) is not only becoming increasingly
accurate, but also increasingly adapted for producing timely, incremental output.
However, overall accuracy and timeliness alone are insufficient when it comes to
interactive dialogue systems which require stability in the output and responsivity
to the utterance as it is unfolding. Furthermore, for a dialogue system to deal with
phenomena such as disfluencies, to achieve deep understanding of user utterances
these should be preserved or marked up for use by downstream components, such as
language understanding, rather than be filtered out. Similarly, word timing can be
informative for analyzing deictic expressions in a situated environment and should
be available for analysis. Here we investigate the overall accuracy and incremental
performance of three widely used systems and discuss their suitability for the afore-
mentioned perspectives. From the differing performance along these measures we
provide a picture of the requirements for incremental ASR in dialogue systems and
describe freely available tools for using and evaluating incremental ASR.

1 Introduction

Incremental ASR is becoming increasingly popular and is available both commercially
and as open-source. Given this recent development of systems, the question arises as
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to how they perform and compare to each other, not just in terms of utterance-final
accuracy but also in terms of their incremental performance.

For a spoken dialogue system (SDS) consuming ASR output, incrementally re-
ceiving partial results for an on-going utterance means the system can start process-
ing words before the utterance is complete, leading to advantages such as quicker
responses, better interactive behaviour and dialogue management, more efficient
database queries, and compensation for inefficient downstream processors such as
slow robot actuators – see Schlangen and Skantze (2011) for an overview. SDSs that
process incrementally produce behaviour that is perceived to be more natural than
systems that use the traditional turn-based approach (Aist et al. 2006; Skantze and
Schlangen 2009; Skantze and Hjalmarsson 2010; Asri et al. 2014), offer a more
human-like experience for users (Edlund et al. 2008), and are more satisfying to
interact with than non-incremental systems (Aist et al. 2007).

Metrics have been proposed to evaluate incremental performance for ASR (Bau-
mann, Atterer, and Schlangen 2009; Selfridge et al. 2011; McGraw and Gruenstein
2012), which we build on in this paper. We also deal with evaluating an incremen-
tal ASR’s performance on difficult phenomena from conversational speech such as
disfluency. In this paper we investigate these challenges, firstly by outlining suitable
evaluation criteria for incremental ASRs for dialogue systems, then investigating how
off-the-shelf ASRs deal with speech from participants in a task-oriented dialogue
domain, both with and without training on in-domain data. We present findings using
our criteria to help SDS builders in their decision as to which ASR is suitable for their
domain. The alternative ASR engines that are evaluated in this paper are all accessible
in a uniform way with the freely available InproTK1 (Baumann and Schlangen 2012),
as is the evaluation toolbox InTELiDa2 that we use.

2 The challenge of interactive, conversational speech

While many current SDSs claim to deal with spontaneous speech, this is often in
the form of voice commands that do not require a fast verbal response, with some
exceptions (Skantze and Schlangen 2009; Skantze and Hjalmarsson 2010). When
using voice commands, it has been established that people use more controlled, fluent
and restricted speech than when in a human-only dialogue (Shriberg 1996), with
users often defaulting to what Fischer (2006) calls ‘Computer Talk’.

We argue ASR evaluation currently does not focus on the challenge of interactive
speech as required for a highly interactive SDS. While popular dictation evaluation
domains such as the spoken Wall Street Journal (Paul and Baker 1992) are clearly
unsuitable, even the more SLU (Spoken Language Understanding)-based benchmarks
such as the ATIS (Airline Travel Information Systems) corpus and other genres

1 http://bitbucket.org/inpro/inprotk
2 http://bitbucket.org/inpro/intelida
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Fig. 1 Incrementality in ASR: vertical line indicates current time, diamond the time of update.
(a) perfect output, (b) unstable output, (c) non-incremental but timely, (d) non-incremental and latent.

mentioned in Morbini et al. (2013)’s ASR analysis do not meet the demands of ASR
for high levels of interactivity and responsiveness.

3 Desiderata for incremental ASR for interactive SDSs

To address the challenge of interactive, conversational speech, here we briefly set out
requirements for ASR for its suitability for interactive SDSs.

3.1 Incrementality and timing information

In addition to being timely and accurate in terms of the final output at the end of
an utterance, we would like timeliness and accuracy on the word level from an
ASR. In Figure 1 we demonstrate the qualities needed by representing the evolution
of hypotheses made by a system over time, going from bottom to top, for the
reference transcription ‘take the red cross’: (a) is the ideal behaviour as it produces
fully incremental output which is completely accurate, occasionally predicting the
word before it is over, whilst the failings in (b), (c) and (d) give us the incremental
desiderata of stability of output, word-by-word incremental output and timeliness of
output. Metrics and tools for measuring these incremental qualities will be described
in Section 4.

Another factor of situated conversational speech are deictic references that, in a
fast-moving environment, can only be interpreted correctly if the timing of deictic
references (and possibly co-occurring pointing gestures) is available for analysis. It is
thus crucial that an ASR provide, in a timely manner, timing of the recognized words.
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3.2 Suitability for disfluency

One principal feature strikingly absent from Computer Talk but abundant in hu-
man conversational speech is disfluency. Within the larger goal of incorporating
understanding of disfluent behaviour to dialogue systems (Ginzburg et al. 2014), we
require an ASR to detect all words in speech repairs, preserving the elements of the
well-established structure in (1) from Meteer et al. (1995)’s mark-up.

(1) John [ likes︸ ︷︷ ︸
reparandum

+ {F uh}︸ ︷︷ ︸
interregnum

loves ]︸ ︷︷ ︸
repair

Mary

There is evidence that repairs are reasoned with on an incredibly time-critical level
in terms of understanding (Brennan and Schober 2001) and there are clear examples
of the reparandum being needed to calculate meaning – such as in (2) and (3) where
semantic processing access to “the interview” is required to resolve the anaphoric “it”
and “the oranges” is required to resolve “them”. If an incremental disfluency detector
such as Hough and Purver (2014) is to work in a live system, all words within a
disfluency must become available in the ASR output, and not be filtered out.

(2) “ [ the interview, was + {. . .} it was ] all right.” (Clark 1996)

(3) “have the engine [ take the oranges to Elmira, + { um, I mean, } take them to
Corning ] ” (Core and Schubert 1999)

Filled pauses‘um’ and ‘uh’ can be considered English words in terms of their mean-
ing in conversation (Clark and Fox Tree 2002) and transcribers can reliably transcribe
them. While they can form interregna as in (1), isolated, non-repair filled pauses
can indicate forward-looking trouble from conversation participants (Ginzburg,
Fernández, and Schlangen 2014). These should therefore not be filtered out dur-
ing speech recognition if we are to build truly interactive systems.

Given this motivation, in additional to good incremental properties, we would
also like an ASR to exhibit preservation of disfluent material, that is, we would prefer
word hypotheses that are useful for disfluency detection and processing, with no
filtering out of reparanda and filled pauses.

4 Evaluation Metrics

To address the desiderata we split our evaluation methods into accuracy, timing and
evolution of hypotheses over time. Incremental metrics are provided by the InTELiDa
toolbox (Malsburg, Baumann, and Schlangen 2009).
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4.1 Utterance-level Accuracy and Disfluency Suitability

We use standard Word Error Rate (WER) of the final (non-incremental) hypothesis.
Incremental ASR cannot reliably outperform the accuracy of non-incremental systems,
hence its utterance-final quality is what matters most. To measure accuracy on
disfluencies, we filter all filled pauses and all reparanda from the transcripts (leaving
only the repair phases), so the standard reference ‘John likes uh loves Mary’ becomes
‘John loves Mary’ and compare WER before and after filtering. This is in order to find
how much disfluent material is recovered (which would result in worse performance
on the filtered reference) or whether the ASR itself filters disfluencies accurately
(in which case the performance would improve on the filtered reference). WER
disfluency gain is simply: WER on disfluency filtered original transcript – WER on
original transcript. For preservation of disfluent material, the higher this gain the
better. However for accuracy of filtering out disfluency, the lower the better.

4.2 Timing

Following Baumann, Buß, and Schlangen (2011) we use the First Occurrence (FO)
and Final Decision (FD) measures to investigate timeliness, where:

FO is the time between the (true) beginning of a word and the first time it occurs
in the output (regardless if it is afterwards changed). In Figure 1, (c) and (d) would
perform poorly using this metric, in particular for ‘take’ which is reported only long
after it has been spoken.

FD is the time between the (true) end of a word and the time when the recognizer
decides on the word, without later revising it anymore. If an ASR correctly guesses a
word before it is over, the value will be negative. Often, FD occurs simultaneously
with FO. If not, a word is revised and later returned to, which can be a frequent
occurrence at word boundaries.

Timeliness can only be measured for words that are correctly recognized or at
least appear in the final output of the recognizer and timing distributions are reported
below. FO and FD measure when words are recognized, but not how well-aligned
these are to the actual timing of the word in the audio. However, our impression is
that recognizers which report such timing information are very accurate (on the order
of centiseconds). Thus, the availability of timing is mostly a binary decision and
depends on the recognizer’s interface.

4.3 Diachronic Evolution

The diachronic evolution of hypotheses is relevant to capture how often consuming
processors have to re-consider their output and for how long hypotheses are likely to
still change. We have previously used Edit Overhead the proportion of unnecessary
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edits during hypothesis building, to account for the former. However, we disregard
this aspect in the present work, as EO is mostly measuring computational overhead
and there are effective measures to reduce EO (Baumann, Atterer, and Schlangen
2009).

We instead focus on the stability of hypotheses (Selfridge et al. 2011), which
measures the ‘temporal extent’ of edits. For words that are added and later revoked
or substituted we measure the “survival time” and report aggregated plots of word
survival rate (WSR) after a certain age. These statistics can be used to estimate the
likelihood of the recognizer being committed to a word during recognition.

5 Evaluation domain: Pentomino puzzle playing dialogue

Fig. 2 Example game scenes and collection setup used in collecting Pentomino interaction data.

The evaluations below make use of recorded human-human dialogue, and also
interactions between humans and (wizard controlled) SDSs, where participants were
instructed to play simple games with the “systems”. In all cases, the games made
use of geometric Pentomino puzzle tiles where participants referred to and instructed
the systems or human interlocutors to manipulate the orientation and placement
of those tiles. The interactions were all collected and utterances were segmented
and transcribed. The corpora were originally described, respectively, in Fernández,
Lucht, and Schlangen (2007), Kousidis, Kennington, and Schlangen (2013), and
Kennington and Schlangen (2015). We make use of two sets of data in German and
English. The German data yields 13,063 utterances (average length of 5 words; std
6.27) with a vocabulary size of 1,988. Example game scenes are shown in Figure 2
and example utterances (with English glosses) are given in Examples (4), and (5)
below. We use the German data for training and evaluating ASR models explained in
Section 6.2. We also use English data (both UK and US) from this domain yielding
686 telephone-mediated utterances (6,157 words) for evaluating existing English
models, as explained in Section 6.1.

(4) a. drehe die Schlange nach rechts
b. rotate the snake to the right

(5) a. dann nehmen wir noch das zw- also das zweite t das oben rechts ist ...
aus dieser gruppe da da möchte ich gern das gelbe t haben ... ja

b. then we take now the se- so the second t that is on the top right ... out of
this group there I would like to have the yellow t ... yes
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6 Evaluation of three ASR systems: Google, Sphinx-4, and Kaldi

6.1 Experiment 1: Off-the-shelf models for a dialogue domain

In our first experiment we do not train or adapt any of our ASR systems but evaluate
their off-the-shelf performance (as in Morbini et al. 2013, but including incremental
performance). We evaluate on 686 utterances from the English data explained above.

6.1.1 Systems

We evaluate Sphinx-4 (Walker et al. 2004) with most recent general AM and LM
(version 5.2 PTM) for (US-)English, Google’s web-based ASR API (Schalkwyk et al.
2010) (in the US-English setting) and Kaldi (Povey et al. 2011), for which we use the
English Voxforge recipe (57,474 training utterances, avg 9.35 words per utterance,
presumably dominated by US-English). We choose Google as the state-of-the-art
ASR available via a Web-interface. We use Sphinx-4 because it has previously been
adapted for incremental output processing (Baumann, Atterer, and Schlangen 2009)
and Kaldi as an open-source speech recognition system that is growing in popularity
and has incremental capabilities (Plátek and Jurčı́ček 2014).

Google partial results can consist of multiple segments, each of which is given a
stability estimate (McGraw and Gruenstein 2012). In practice, Google only returns
stabilities of 1 % or 90 % (for both German and English). While incremental results
are 1-best, the final (non-incremental) result contains multiple alternatives, with
a confidence measure for the first (presumably most likely) alternative. This final
hypothesis appears to make use of post-incremental re-scoring or re-ranking. While
this is obviously intended to optimize the result quality (SER or WER), it means that
incremental results are just a ‘good guess’ as to what the final result will be, with
implications for the timing metrics as reported and discussed below.

We implemented multiple options for interpreting the Google output:
stable use only those segments which have a high stability (we use a threshold of

> 50%, but estimates as reported by Google are essentially binary),
quick use all segments, including the material with low stability,
sticky ignore the re-ranking from Google and choose the final hypothesis that

best matches the previous 1-best incremental result (as generated by the quick
setting). This setting is expected to result in lower non-incremental performance.

6.1.2 Non-incremental quality and disfluency suitability

WER results across the reference variants are shown in Table 1. Google-API clearly
outperforms the other systems. However, its WER does not degrade on disfluency-
filtered transcripts as much as Sphinx-4, which has the largest WER disfluency gain
of 4.70, showing it is preserving the disfluent material the most. Manual inspection
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System US English speakers All English speakers
WER (all) disfluency filtered WER (all) disfluency filtered

Google-API-stable/quick 25.46 28.16 (+2.70) 40.62 41.60 (+0.98)
Google-API-sticky 26.08 29.29 (+3.21) 41.23 42.82 (+1.59)

Sphinx-4 57.61 62.31 (+4.70) 72.08 75.34 (+3.26)
Kaldi 71.31 73.38 (+2.07) 77.57 79.05 (+1.48)

Table 1 Word Error Rate (WER) results on English Pentomino data for the off-the-shelf systems
under different transcript conditions with the WER disfluency gain in brackets.
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Fig. 3 (a and b): Histograms showing the distribution of first occurrence of words (a) and final
decision for words (b) for the three recognizers (and Google’s three settings). Box plots show the
median, quartiles (box) and 5/95% quantiles (whiskers). Some extreme (negative) values may be
caused by alignment errors. (c): Stability of hypotheses expressed as word survival rate over time.
A higher curve implies a higher stability.

shows Google filtering out many speech repairs and performing badly around them –
see (6-a) vs. (6-b). An improved model for filled pauses would also prevent errors
like (7-b).

(6) a. Reference: and the and his front uh his le- the the the back
b. Google-API-fast: and the and the front of theater

(7) a. Reference: uh another L shape except it’s um symmetrically
b. Google-API-fast: another L shape septic sam symmetrically

Also, we notice that performance varies substantially between UK and US speakers,
which is a problem for a corpus that contains mixed speakers. Finally, the post-hoc
re-scoring that is performed by Google-API in the stable and quick conditions only
marginally improves WER over sticking with the strategy used for incremental
processing (presumably SER-optimizing Viterbi decoding).

Finally, we note that the Google-API only provides a transcript of words, both
Sphinx and Kaldi generate detailed word timings that can be used for analysis by
downstream modules.
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6.1.3 Incremental quality

Figure 3 plots timing and stability for three recognizers (and Google’s three settings).
Timing metrics are shown for all hypothesized words (rather than just for words that
match the transcript). As can be seen in Figure 3 (a, b), both Kaldi and Sphinx often
have a first impression (FO, Subfigure a) of the word right after it is being spoken,
while Google is lagging a little. Google and Sphinx are a little quicker in deciding
for a word (FD, Subfigure b) than Kaldi, but Google in particular is hurt by words
being revised long after they have been hypothesized. This is clearly observable in
Figure 3 (c), which shows that a word still has a 5 %-chance of revision even after it
has been hypothesized for 1 second (and Google is already slower in hypothesizing
words in the first place). This ratio is even worse when limiting hypotheses to just the
‘stable’ part, but can be radically improved when ignoring the final, non-incremental
changes of Google ASR (the ‘sticky’ setting), albeit at the cost of about 2 % points
WER relative. As Figure 3 (c) also shows, Kaldi most likely performs some variation
of hypothesis smoothing (Baumann, Atterer, and Schlangen 2009) for 150 ms.

6.2 Experiment 2: Training models on in-domain data

We found rather poor performance (in terms of WER) for the off-the-shelf open-
source systems in our interaction-driven domain, presumably because this speaking
style does not conform to the material used when training models for open-source
systems. In this experiment, we trained models with in-domain data, under the
hypothesis that these result in better performance.

6.2.1 Systems and data

We train acoustic and language models for German using 10.7 hours of transcribed
interactions (partly human-human, human-system, and human-wizard) from the
Pentomino domain described above.3 Our Kaldi model is based on an adaptation
of the Voxforge recipe, while our Sphinx-4 model uses the standard settings of
Sphinxtrain. Both used the same data for training.

We evaluate our trained systems (and the Google systems) on 465 utterances
(3,818 words) from randomly chosen speakers from the German data explained
above (the rest was used for training). Given the human-Wizard interaction domain,
compared to the English corpus above, it contains slower, more dictation-like speech
with few disfluencies, so we would expect the accuracy results to be better, all things
being equal in this domain. However, we find how the large gap to big data driven
ASRs such as Google can be closed somewhat with in-domain trained models.

3 In our effort, we tried reasonably hard to build well-performing models, but we did not strive for
best performance, using as much material (whether in-domain or not) as we could get; e.g., blending
our LMs with Wikipedia, or the like.
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System German
WER (all) disfluency filtered

Google-API-stable/quick 22.00 21.86 (-0.14)
Google-API-sticky 20.51 20.44 (-0.07)

Sphinx-4 30.28 30.25 (-0.03)
Kaldi 38.95 38.91 (-0.04)

Table 2 Word Error Rate (WER) results on German Pentomino data for the trained systems under
different transcript conditions with the WER disfluency gain in brackets.

6.3 Results

WER results across the reference variants are shown in Table 2. Google-API’s
systems have comparable performance to the English data above, however the post-
hoc rescoring actually hurts on this data, with a relative performance hit of 7 %.
Sphinx-4 and Kaldi greatly improve through the in-domain training.

The disfluency results in this setting are not as interesting, given the lack of
disfluency in the training files, and we take the analysis on the English data above to
be indicative of the relative performance of the ASRs.

Incremental metrics are generally unchanged, with a tendency for Sphinx and
Kaldi to perform even better which may be related to their better non-incremental
performance.

7 Conclusions

We claim that for suitability for incremental, interactive dialogue systems, ASR, in
addition to having good utterance-final accuracy, must also exhibit good incremental
properties, and offer a broad interface that either keeps or marks up disfluencies, and
provides timing information for downstream processing.

In our evaluation, we find that Google-API offers the best non-incremental perfor-
mance and almost as good incremental performance as Sphinx and Kaldi. However,
Google tends to filter out disfluencies, does not provide word timing information,
and limits access to 500 calls per API key a day. We also find that Google’s post-hoc
rescoring does not improve WER while considerably hurting incremental perfor-
mance. Finally, Sphinx and Kaldi seem to be on par performance-wise, and at least
when trained on in-domain data, these perform similarly well to the Google-API.

We have not, in the present paper, factored out the difference between in-domain
acoustic models and language models. LMs may already be enough to boost per-
formance for open-source recognizers and are much easier to train. Finally, we
want to look into how to incrementally combine recognizers (e. g. Google-API for
lowest-possible WERs with Sphinx or Kaldi for timely and time-stamped responses).
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