No Sooner Said Than Done? Testing Incrementality of Semantic Interpretations of Spontaneous Speech

Michaela Atterer, Timo Baumann, David Schlangen

Department for Linguistics, University of Potsdam, Germany

I. Introduction

Background: In highly interactive settings, Incremental Spoken Dialogue Systems are preferred over non-incremental systems as they react faster and more naturally (Aist et. al 2007).

- \rightarrow need to build up syntactic and semantic structure on the fly while the user is still speaking.
- \rightarrow needs theory-neutral assessment of the quality of incrementally built semantic structure.

Research Goals

- present generic measures to evaluate incremental semantics construction
- · focus is on measuring the incrementality (not necessarily the quality of the non-incremental result)
- show and analyze the performance of our specific module on a specific corpus

II. Incremental **Semantics Construction**

- Approaches vary by strictness of incrementality (Nivre, 2004) vs. ambiguity of structures
- classical trade-off: slow and precise or quick and vague

Previous Work

Aist et al., (2006) and Bücher et al. (2002) generate (partial) hypotheses once semantics can be constrained to a small set:

> "move a large triangle to ..." move(X,Y)move(triangle,Y)

Schuler (2002), Brick and Scheutz (2007), and others generate (all) structures that might possibly match in the future:

> "move a large triangle to ..." move(triangle ∨ square ∨ circle ∨ ...)

Neither of the previous work evaluates the incrementality of the semantic interpretation on a corpus.

Partly, evaluation is intrinsic to the used semantics construction mechanisms.

III. Evaluating Incremental Semantics Construction

There is no incremental gold-standard!

- in non-incremental evaluation, we can just compare to the human annotated gold-standard
- there is no (cannot be?) annotation of what should be known up to a certain word in the utterance
- \rightarrow All in all, we want the final result (or parts thereof) as soon as possible.

Measures

The measures we propose relate relative position in the utterance and comparison to the non-incremental gold.

Also, we differentiate both partial and complete success:

- first correct element (FCE):
- When is the first element of the representation correct?
- first correctly-filled representation (FCR): When (in percent) do we first match the gold-standard?
- first finally correctly-filled representation (FFR): When does the correct representation not change anymore?
- degree of correctness (DC) at a certain time: The percentage of elements correctly filled on average.

IV. Application

Domain

Non-interactive explanations of puzzle-piece placements in the Pentomino domain. Data from (Siebert and Schlangen, 2008).

- · manually transcribed with a 5-slot frame-semantics
- CTION OBJECT: development, 400 in the evaluation

332 test utterances (68 utterances had completely empty frames)

 we distinguish 171 short utterances (≤ 10 words) and 161 long utterances (> 10 words)

Our Incremental Semantics Component

We use RUBISC, the Robust Unification-Based Incremental Semantic Chunker (Atterer and Schlangen, 2009).

- based on the idea of semantic units (Selkirk, 1984), which correspond to phonological phrases
- · collect word material until there is enough information to change the state of the semantic frame
- · contentful units are defined in a grammar via regular expressions
- · words are consumed until a unit is complete and the corresponding slots in the frame are filled
- selectional restrictions can be modelled by filling slots with special "blocker" values

Results

before the utterance is over

 \rightarrow this is especially true for long utterances.

• parts of the interpretation are already first correct (FCE) in the beginning of an utterance

- \rightarrow this could e.g. be used to prepare
- possible system responses.
- high degrees of correctness increase with time, low decrease
- · considerable knowledge after only 40% of the utterance relative stability in DC between 40% to 80% of the utterance
- → the first few and the final word
 - in the utterance are most important.

V. Discussion

We have defined measures to evaluate the incrementality of semantic components against a non-incremental gold-standard:

- measures seem to capture meaningful aspects of incremental semantic interpr.,
- measures are generic enough and allow to compare components with differing approaches to semantic interpretation.

We have evaluated our semantic component and found that incremental semantic interpretation is worthwhile:

• considerable knowledge with only parts of the utterance available.

Our results are obviously limited to corpus and semantics:

• standardized corpora and annotations are needed to compare different approaches.

Bibliography

- G. Aist, J. Allen, E. Campana, C. Gallo, S. Stoness, M. Swift, and M. Tanenhaus, "Incremental understanding in human-computer dialogue and experimental evidence for advantages over nonincremental methods", in *Decalog* 2007, Trento, Italy, 2007.
- [2] J. Nivre, "Incrementality in deterministic dependency parsing", in Proc. of the ACI Workshop Incremental Parsing: Bringing Engineering and Cognition Together, Barcelona Spain, 2004.
- [3] G. Aist, S. Stoness, and J. Allen, "Steps towards incremental semantics for spoken dialog systems," in MCLC-2006, Urbana, USA, 2006.
- [4] K. Bücher, G. Görz, and B. Ludwig, "Corega tabs: Incremental semantic composition" in Proc. of KI-2002 Workshop on Applications of Description Logics, Aachen, Germany,
- [5] H. Kamp and U. Reyle, From Discourse to Logic. Dordrecht: Kluwer, 1993. [6] W. Schuler, "Interleaved semantic interpretations in environment-based parsing", in
- Proc. of COLING-2002, Taipei, Taiwan, 2002. [7] T. Brick and M. Scheutz, "Incremental natural language processing for HRI⁸, in Proc. of HRI '07, New York, USA, 2007.
- [8] C. Rosé, A. Roque, and D. Bhembe, "An efficient incremental architecture for robust
- interpretation", in Proc. of HLT 2007, San Francisco, USA, 2002. [9] S. Stoness, J. Ttreault, and J. Allen, "Incremental parsing with reference interaction", in ACI, Workshop on Incremental Parsing, Barcelona, Spain, 2004
- [10] M. Atterer and D. Schlangen, "Rubisc a robust unification-based incrementa semantic chunker", in Proc. SRSL2009, Athens, Greece, 2009
- [11] E. Selkirk, Phonology and Syntax. The relation between sound and structure. Cambridge USA: MIT Press, 1984. [12] M. Nespor and I. Vogel, Prosodic Phonology. Dordrecht: Foris Publications, 1986

[13] A. Siebert and D. Schlangen, "A simple method for resolution of definite reference in a shared visual context", in Proc. of SIGDial, Columbus, Ohio, 2008.

Further Information

Please contact us via e-mail at { atterer | timo | das }@ling.uni-potsdam.de

This work is funded by a DFG grant in the Emmy Nother programme.

• 500 utterances: 100 for grammar NAME: X-POS: Y-POS: END-POS: