
Incremental Spoken Dialogue Processing:

Architecture and Lower-level Components

Timo Baumann

±

©Copyright 2013 Timo Baumann, Diplom-Informatiker aus Hamburg.

Dissertation zur Erlangung des akademischen GradesDoctor philosophiae (Dr. phil.)
vorgelegt an der Fakultät für Linguistik und Literaturwissenscha�
der Universität Bielefeld am 2. April 2013.

Prüfungskommission:
Prof. Dr. David Schlangen (Betreuer und Gutachter)
Prof. Dr. Petra Wagner (Gutachterin)
Prof. Dr.-Ing. Stefan Kopp
Prof. Dr. Jan de Ruiter

Datum der mündlichen Prüfung: 16.Mai 2013.

Printed on acid-free, aging-resistant paper (according ISO 9706).
Gedruckt auf säure-freiem, alterungsbeständigen Papier (nach ISO 9706).

Overview

Kurzfassung 4

1 Introduction 14

2 Spoken Dialogue and Spoken Dialogue Systems 22

3 Incremental Processing and its Evaluation 45

4 A Software Architecture for Incremental Spoken Dialogue Processing 73

5 Incremental Speech Recognition 88

6 Short-Term Estimation of Dialogue Flow 138

7 Incremental Speech Synthesis 172

8 Conclusion and Outlook 218

3

Schritthaltende Sprachdialogverarbeitung:

Architektur und signalnahe Komponenten

Diese Arbeit befasst sich mit Sprachdialogsystemen, also Mensch-Maschine-Schnitt-
stellen die (primär) über gesprochene Sprache genutzt werden. Sprachdialogsysteme
sind vor allem deshalb attraktiv, weil Sprache eine besonders natürliche und intuitive
Interaktionsform darstellt.
Der Nutzen von Sprachdialogsystemen ergibt sich jedoch bisher daraus, dass sie

helfen, relativ einfache Aufgaben sinnvoll zu erfüllen – denn tatsächlich ist die Na-
türlichkeit bisheriger Sprachdialogsysteme stark durch das vereinfachende Verar-
beitungsschema der Ping-Pong-Interaktion eingeschränkt: Übliche Dialogsysteme
erwarten einen vollständigen und abgeschlossenen Redebeitrag, auf den das System
(nach einer gewissen Verarbeitungszeit) mit einem gleichfalls vollständigen, o� unun-
terbrechbaren Redebeitrag antwortet. Die Redebeiträge von System und Nutzer sind
also überlappungsfrei, was nicht den tatsächlichen Gegebenheiten natürlichsprachli-
cher Interaktion entspricht, die von einem beiderseitigen Geben und Nehmen lebt,
und bei der auch der jeweilige Zuhörer hil�, den Redebeitrag des jeweiligen Sprechers
durch Mimik, kurze Einwürfe, und dergleichen mitzugestalten.
Schritthaltende Verarbeitung ist ein Konzept, bei der die Verarbeitung bereits wäh-

rend der Eingabephase abläu� und Zwischenergebnisse bereits erzeugt werden bevor
die Eingabe abgeschlossen ist. Einem Dialogsystem erlaubt schritthaltende Verarbei-
tung Reaktionen zu erzeugen die zeitgleich zur noch laufenden Eingabe erfolgen, oder
entgegengebrachte Nutzerrückmeldungen in laufende Systemausgaben zu integrieren.
Dadurch erlaubt schritthaltende Verarbeitung eine schnellere Rückkopplung zwi-
schen Nutzer und System, was zu höherer Interaktivität und besserem gegenseitigen
Verständnis führen kann. Das Ziel dieser Arbeit ist, den Nutzen schritthaltender
Verarbeitung auf die Interaktionsqualität von Sprachdialogsystemen zu untersuchen.
Dabei beschränkt sich die detaillierte Analyse auf signalnahe Komponenten (Spra-
cherkennung und -synthese); Module übergeordneter Abstraktionsgrade sind in den
Beispielsystemen teilweise weniger ausgefeilt, oder nur simuliert.
Die Leitfrage der Arbeit ist, inwieweit feingliedrig schritthaltende Verarbeitung

technisch realisierbar ist und auf natürlichere Weise interagierende Sprachdialogsys-
teme ermöglicht. Darüber hinaus wird argumentiert, dass Dialog proaktives Handeln
verlangt, also nicht rein auf Basis bereits vorliegender Erkenntnis, sondern außerdem
auf Grundlage von Schätzungen über die (nähere) Zukun�.

4

Kurzfassung

Bei schritthaltender Verarbeitung werden sehr viele Zwischenergebnisse erzeugt
und da diese jeweils nur aus einem begrenzten Kontext heraus erzeugt werden, ergibt
sich die Erfordernis, sie auch verwerfen zu können; dies erfordert Anpassungen der
Systemarchitektur gegenüber bisherigen Systemen.
Kapitel 2 gibt einen Überblick über Fragen der gesprochensprachlichen Interaktion,

des Dialogs und Dialogsystemen.
Kapitel 3 vertie� dann die �ematik der schritthaltenden (inkrementellen) Ver-

arbeitung und führt einen Formalismus für die Darstellung von Hypothesen ein,
anhand dessen Qualitätsmaße schritthaltender Verarbeitung de�niert werden, die
ausführlich diskutiert werden.
Kapitel 4 stellt die Architektur des im Rahmen der Arbeit entwickelten So�ware-

toolkits für schritthaltende Verarbeitung (engl. incremental processing), InproTK vor
und diskutiert Daten- und Verarbeitungsschemata.
Kapitel 5 betrachtet inkrementelle Spracherkennung. Die ‚inkrementelle Qualität’

der Spracherkennung wird intensiv auf mehreren Korpora und für unterschiedliche
Varianten in all ihren Aspekten untersucht. Schließlich werden Optimierungsme-
thoden vorgestellt, welche Qualitätsaspekte gegeneinander abwägen. Der Nutzen
inkrementeller Spracherkennung wird beispielha� in einer Spielanwendung gezeigt.
Kapitel 6 geht den Schritt von möglichst reaktiver zu proaktiver Verarbeitung,

welche erlaubt, den Dialogverlauf aktiv zu steuern. Eine Beispielanwendung zeigt,
wie durch schritthaltende Verarbeitung die Rückkopplung zwischen Nutzer und Sys-
tem beschleunigt und dadurch Nutzeräußerungen gemeinscha�lich gestaltet werden
können. Schließlich wird ein System gezeigt, welches Nutzeräußerungen synchron
mitspricht. Dieses System zeigt, dass inkrementelle und proaktive Verarbeitung syn-
chrone Interaktionsfähigkeiten in Echtzeit ermöglichen, indem alle Systemverzöge-
rungen an anderer Stelle durch Prädiktion ausgeglichen werden.
Kapitel 7 betrachtet inkrementelle Sprachsynthese, bei der die Spezi�kation der

Äußerung noch während der Synthese erweitert oder abgeändert werden kann. Der
Nutzen dieser Fähigkeit wird in einer hochdynamischen Umgebung demonstriert, in
der Inkrementalität Reaktionen ermöglicht die als deutlich natürlicher im Vergleich
zu einem nicht-inkrementellen System eingeschätzt werden. Schließlich wird die
Integration inkrementeller Sprachsynthese mit einem Sprachgenerierungsmodul
demonstriert, und der Ein�uss auf die resultierende Prosodiequalität des Systems
bewertet.
Kapitel 8 fasst die Ergebnisse der Arbeit zusammen: feingliedrig schritthaltende

Verarbeitung ist technisch möglich und so erfolgreich, dass dadurch für Sprachdia-
logsysteme vormals unerreichbare Interaktionsmodi ermöglicht werden (u. a. ge-
meinscha�liche Äußerungsgestaltung, synchrones Sprechen, Berücksichtigung von
Änderungen während Systemäußerungen). Schritthaltende Verarbeitung sollte des-
halb die Basis für zukün�ige Sprachdialogsysteme bilden.

5

Detailed Table of Contents

Kurzfassung 4

1 Introduction 14

1.1 �esis Outline . 18
1.2 Contributions . 19
1.3 Previously Published and Co-authored Material 20

2 Spoken Dialogue and Spoken Dialogue Systems 22

2.1 Modelling Dialogue . 22
2.1.1 �e Shannon-Weaver Model of Communication 23
2.1.2 Layers of Communication . 25
2.1.3 Emergence of Behaviour in Complex Systems 28
2.1.4 Establishing Common Ground 30
2.1.5 Taking Turns . 31
2.1.6 Feedback and the Backward Channel 32

2.2 Components and Architecture for Spoken Dialogue Systems 33
2.2.1 Components of Spoken Dialogue Systems 33
2.2.2 Interconnection of Components 36
2.2.3 Discussion . 39

2.3 State of the Art in Spoken Dialogue Systems 40
2.3.1 Commercial, Standards-based Systems 40
2.3.2 Related Research Systems . 41
2.3.3 Advanced Commercial Systems 42

2.4 Summary and Discussion . 43

3 Incremental Processing and its Evaluation 45

3.1 Timeliness and Incrementality . 45
3.1.1 Aspects of Incrementality . 47
3.1.2 Related Work on Evaluating Incremental Processing 48
3.1.3 Relation to Anytime Processing 49

3.2 Our Notion of Incremental Processing 50
3.2.1 Incremental Processors . 50
3.2.2 Representing Incremental Data 53

6

Detailed Table of Contents

3.3 Evaluation of Incremental Processors 59
3.3.1 Gold Standards for Evaluation 59

3.3.1.1 Evaluation with Incremental Gold Standards . . . 60
3.3.1.2 Evaluation with Non-Incremental Gold Standards 63

3.3.2 Metrics for Evaluation of Incremental Processors 64
3.3.2.1 Similarity Metrics 64
3.3.2.2 Timing Metrics . 67
3.3.2.3 Diachronic Metrics 69
3.3.2.4 Interrelations between Metrics 71

3.4 Summary . 72

4 A Software Architecture for Incremental Spoken Dialogue Processing 73

4.1 �e Data Model: Incremental Units 74
4.1.1 �e IU Network . 76
4.1.2 Triangular Data Models . 78

4.2 �e Processing Model . 80
4.2.1 Incremental Modules and Inter-Module Communication . . 80
4.2.2 Alternative Processing Schemes 83

4.3 Infrastructure . 85
4.4 Discussion . 85

5 Incremental Speech Recognition 88

5.1 Automatic Speech Recognition in a Nutshell 89
5.1.1 Modelling Speech Data . 90

5.1.1.1 �e Language Model 91
5.1.1.2 �e Pronunciation Model 93
5.1.1.3 Acoustic Modelling in the ASR Frontend 93

5.1.2 �e Speech Recognizer . 96
5.1.2.1 Hidden Markov Models 97
5.1.2.2 �e Decoding Algorithm 99

5.1.3 Evaluating Speech Recognition 101
5.1.4 Re�nements . 102
5.1.5 �e Sphinx-4 Speech Recognizer 103

5.2 Incrementalizing Speech Recognition 104
5.2.1 �e InproTKModule for Incremental Rich SpeechRecognition105

5.3 INTELIDA: A Workbench for Evaluating iSR 107
5.3.1 �e Library . 107
5.3.2 Interactive Tools . 108

5.4 Evaluation of Basic Incremental Speech Recognition 110
5.4.1 Variations of the Setup and Stability of Results 116

7

Detailed Table of Contents

5.4.2 N-Best Processing . 117
5.5 Optimization of Incremental Speech Recognition 119

5.5.1 Right Context . 122
5.5.2 Hypothesis Smoothing . 124
5.5.3 Advanced Smoothing Methods 126

5.6 Example Application: Incremental Command-and-Control 128
5.6.1 �e Greifarm Domain . 128
5.6.2 Cost-based Smoothing . 129
5.6.3 Wizard-of-Oz Experiment . 130
5.6.4 System Implementation . 131
5.6.5 Evaluation . 133

5.7 Summary and Discussion . 134

6 Short-Term Estimation of Dialogue Flow 138

6.1 Floor Tracking in INPROTK . 140
6.1.1 Architecture and Implementation 141
6.1.2 Example Application: Collaborating on Utterances 142

6.1.2.1 Domain and Setup 143
6.1.2.2 Experiment and Results 145

6.1.3 Discussion . 147
6.2 Micro-Timing Prediction . 147

6.2.1 Motivation for the Task . 148
6.2.2 Related Work on Simultaneous Speech 150
6.2.3 System Architecture . 153
6.2.4 Two Models for Micro-Timing 154
6.2.5 Evaluation . 157

6.2.5.1 Corpus and Experiment Setup 157
6.2.5.2 End-of-Word Prediction: When to Start Speaking 159
6.2.5.3 Predicting the Micro-Timing of the UpcomingWord162
6.2.5.4 Estimating the Reliability of the Predictions 164
6.2.5.5 Summary . 165

6.2.6 Example Application: Speaking in Synchrony With the User 166
6.2.7 Discussion . 167

6.3 Summary and Discussion . 169

7 Incremental Speech Synthesis 172

7.1 Rationale for Incremental Speech Synthesis 173
7.1.1 Related Work . 175
7.1.2 Requirements . 176

8

Detailed Table of Contents

7.2 Speech Synthesis in a Nutshell . 178
7.2.1 Text-based Linguistic Processing 179
7.2.2 HMM-based Waveform Synthesis 180

7.2.2.1 Parameter Estimation with HMMs 181
7.2.2.2 Vocoding . 181

7.2.3 Discussion of Alternative Synthesis Techniques 182
7.2.4 Evaluation of Speech Synthesis 183
7.2.5 MaryTTS . 184

7.3 Incrementalizing Speech Synthesis . 185
7.3.1 Incremental Speech Synthesis in INPROTK 188

7.3.1.1 Utterance Tree-based iSS 188
7.3.1.2 An Incremental Module for Speech Synthesis . . . 189
7.3.1.3 Very Low-Latency Prosody Adaptation 190
7.3.1.4 Automatic Hesitation 191

7.3.2 Conformance to the Requirements 192
7.4 �e Merit of iSS . 193

7.4.1 Domain and System . 194
7.4.2 Evaluation . 196
7.4.3 Results . 197
7.4.4 Discussion . 198

7.5 Example Application: Integration with Incremental NLG 199
7.5.1 Use-Case: Adaptive Information Presentation 200
7.5.2 Implemented System . 201
7.5.3 Evaluation . 203

7.5.3.1 System Response Time 203
7.5.3.2 Subjective Evaluation 205

7.5.4 Discussion . 206
7.6 Evaluating the Prosodic Quality of iSS 207

7.6.1 �e Design Space for Incremental Prosody Production . . . 208
7.6.2 Experiment . 210
7.6.3 Evaluation . 210

7.6.3.1 Qualitative Analysis 211
7.6.3.2 Quantitative Evaluation 212

7.6.4 Conclusion . 214
7.7 Summary and Discussion . 215

8 Conclusion and Outlook 218

8.1 Summary . 218
8.2 Conclusion . 219
8.3 Open Questions . 221

9

List of Figures

2.1 �e Shannon-Weaver Model . 23
2.2 �e Chain Model of Communication 27
2.3 Architecture of and Information Flow in Spoken Dialogue Systems . 36
2.4 Blackboard Architecture for Spoken Dialogue Systems 37
2.5 Control and Information Flow in a Spoken Dialogue System 39

3.1 Degrees of Proactiveness . 46
3.2 Relation Between Input and Output in Incremental Processing . . . 50
3.3 ASRHypotheses During Incremental Recognition 55
3.4 One-best, N-best and Lattice Output of an ASR 56
3.5 Task-dependent Gold Standards for a Dis�uent Utterance 60
3.6 Gold Standard for Incremental Speech Recognition 61
3.7 Subsequent Outputs for an Incremental Semantics Component . . . 62
3.8 A Semantic Frame Represented in the IU Framework 63
3.9 An ASR’s Actual Incremental Output 65

4.1 IUHierarchy in InproTK . 76
4.2 IU Network . 77
4.3 Triangular Data-Driven IU Network 79
4.4 Two Incremental Modules with Contained IUs 81
4.5 Incremental Modules With Update Listening 84

5.1 A Discrete HMMWith�ree Emitting States 97
5.2 A Branching HMM . 99
5.3 Pronunciation Lextree . 101
5.4 A Screenshot of the Intelida Graphical Interface 108
5.5 Distribution of FO and FD . 113
5.6 Timing Metrics and ASR Errors. 114
5.7 Correction Time and IU Survival Time 115
5.8 Stability of iSR Results Under Varying Conditions 116
5.9 FO Distribution Varying with N-best List Size 118
5.10 Lattice During Incremental Speech Recognition 120
5.11 Right Context for Improving iSR . 123
5.12 Hypothesis Smoothing for Improving iSR 125

10

List of Figures

5.13 Timing Metric Distribution Comparison for Optimized iSR 126
5.14 Per-Word correction times . 127
5.15 �e Greifarm Domain for Incremental Command-and-Control . . . 128
5.16 Wizard Interface for the Command-and-Control Task 130
5.17 UML Diagram of the Greifarm Prototype 132

6.1 �e Place of a Floor Tracking Component in the iSDS Architecture . 141
6.2 �e Pentomino Select System Domain 144
6.3 Task Durations in the Pentomino Select System Versions 146
6.4 �e Micro-Timing Task in Co-Completion 149
6.5 Ranked Factors In�uencingHuman Synchronous Speech Performance151
6.6 Schematic View of the Co-Completion System 153
6.7 Micro-Timing Models . 155
6.8 FO Distribution/Time Available to Determine Shadowing 159
6.9 EoW Predictions for Micro-Timing Models 161
6.10 Scatter Plot Showing Micro-Timing Reliability 165
6.11 Example of Shadowing a File in the Corpus 166
6.12 Example of Shadowing Live Input . 167

7.1 Delivery Adjustments in Incremental Speech Synthesis 173
7.2 Example of Utterance Production in aHighly Interactive Environment174
7.3 Processing Paths in Speech Synthesis Systems 178
7.4 Processing Shares of MaryTTS Modules 185
7.5 Schematic View of iSS . 186
7.6 iSS Based on Utterance Trees . 189
7.7 Mediating Push- and Pull-based Processing 190
7.8 Interface to Low-Latency Prosody Adaptation 191
7.9 �e CarChase Domain . 195
7.10 Evaluation Results for the CarChase System 197
7.11 Preferred System Behaviour inHighly Dynamic Environments . . . 198
7.12 Events in the Calendar Domain . 200
7.13 Interplay of Components in the Calendar System 201
7.14 Progress Updates in the Calendar System 202
7.15 Naturalness Ratings for the Calendar System 205
7.16 Design Space for Incremental Prosody Production 209
7.17 Incrementally Generated Pitch Tracks 212
7.18 Interrelation of Lookahead and Prosodic Quality 214

11

List of Tables

2.1 Linguistic Subdisciplines . 26

4.1 General Properties of IUs and Exemplary Operations 75

5.1 Overview of iSR Corpora . 111
5.2 Overview of Raw iSR Performance . 112
5.3 Concepts in the Greifarm Domain . 131

6.1 Performance of Estimating the End of the Ongoing Word 160
6.2 Performance of Estimating the Micro-Timing of the Next Word . . . 163

7.1 System Response Time in the Calendar Domain 204
7.2 Results for Incremental Prosody Production 213

12

13

1 Introduction

�is thesis concerns itself with one of the problems of spoken dialogue systems. A
spoken dialogue system (SDS) is an interface to a computer that mainly interacts
with its human users through spoken language, exchanging multiple spoken turns
(questions and answers, commands and replies, . . .) resulting in a dialogue between
the user (or possibly multiple users) and the system.
Spoken dialogue systems have been in use, for example as remote telephone (in-

teractive voice response) applications, since the 1990’s: �rst using touch-tone, then
extended by allowing spoken keywords, and later simple commands (Pieraccini and
Lubensky 2005). SDSs have also been widely hated by their users (Sharabi and Davi-
dow 2010, p. 196) who tend to prefer to talk to human call center agents instead.
Recently, spoken dialogue systems have been introduced to smartphones in the form
of intelligent personal assistants such as Siri, Google Now, or S Voice. It is especially
remarkable that SDSs are now used on smartphones that should provide ideal con-
ditions for visual/tactile interaction given their large touch screens. �e fact that
SDSs are attractive on these devices means that they will likely become even more
important for human-computer interaction in the future.
Spoken dialogue for interacting with a computing device may be attractive for two

reasons: (a) SDSs hold the potential for very natural communication, very similar
to how humans interact and communicate with each other (though this potential is
lacking in current systems). In addition, (b) when compared to most other modes
of human-computer interaction, SDSs open up an additional, under-used modality,
namely spoken language (currently, the intelligent assistants mentioned above are
multi-modal and make heavy use of the screen1). While interacting through dialogue
is natural and intuitive for humans, dialogue systems so far resolve the issues of
intuitivity and naturalness only to some degree – but su�ciently so to already be of
use in certain situations.
�e success of today’s SDSs largely stems from the fact that they help to solve

relatively simple tasks in useful ways, such as delivery tracking, buying a train ticket
at the station, or when ordering at a restaurant. However, talking to an SDS is not
as uncomplicated and straightforward as interacting with a human and is hardly
ever a pleasurable experience (apart from the humorous aspects). More human-like

1However, this author believes that eventually many personal computing devices will become
too small for detailed visual/tactile interaction, leaving spoken dialogue as the predominant form of
interaction with the device.

14

SDSs can be expected to be applicable to more domains with less clearly-de�ned
tasks and goals that require a larger degree of conversational competence. Roughly
ordered by complexity, these may include: teaching, playing, entertaining, counseling,
psychotherapy, or building and sustaining a personal relationship. Such domains
are beyond the current capabilities of dialogue systems because they require the
interaction to be smooth and natural, not only to be successful on a functional level.2
In a usability study,Ward et al. (2005) identi�ed seven issues detrimental to e�cient

and pleasant dialogue with SDSs (in decreasing order of importance): speech recog-
nition and understanding, time-outs, responsiveness, synthesis, feedback, adaptation,
and other factors (prosody, non-lexical sounds, prompt generation). While not being
the number one priority, time-outs, responsiveness and feedback share the property
of concerning the way that the dialogue evolves, whereas speech recognition and
understanding are primarily important on the functional level. Together these three
factors have a signi�cant share in the usability problems identi�ed by Ward et al.
(2005) and are all related to the crude processing mode of conventional dialogue
systems: ping-pong interaction.
�e ping-pong game that SDSs engage in goes as follows: a full user turn is received,

recognized, analyzed for its meaning, and integrated into the dialogue manager’s
model of the state of a�airs, before a system response is generated, synthesized, and
output to the user. �e main problem with this mode of operation is that there are
no provisions for accepting as input or producing as output anything smaller than a
full turn. �us, relatively long time-outs are required at the end of user turns to avoid
interrupting the user’s turn when she makes a short pause within it. �e overly long
time-outs, together with the time necessary for processing the input and generating
output then result in sluggish responsiveness. Finally, the system is unable to give
feedback during user turns, or to integrate feedback during its own turns. Instead,
when faced with feedback, the system either acts as if it were interrupted and aborts
its utterance, or ignores the feedback altogether.

The goal of this thesis is to investigate a processing scheme that allows for better
interaction quality (and as a result, new applications for SDSs) by overcoming the
ping-pong style of interaction. Incremental processing is considered in this thesis to
be a crucial requirement for better interaction quality.
Incremental processing means to interpret partial input, to process partial hypothe-

ses, and to generate partial results.3 Natural dialogue is both produced (Levelt 1989)
and perceived (Tanenhaus et al. 1995) in an incremental manner by human dialogue
participants, that is, they receive and understand continuously and are able to adapt

2One may argue that computers should never be deployed in any of these roles. �e author agrees
to the degree that computers will remain bad surrogates to humans in all these tasks – however, even a
computer can be better than no help at all in many situations.

3A more detailed view on incremental processing is given in Chapter 3.

15

1 Introduction

ongoing speech with little delay. In a way, SDSs are inherently incremental in that
recognition, analysis and output production are repeated for every user/system turn
exchange. In the terminology of incremental processing, conventional SDSs use a
granularity of turns, that is, turns form the basic units of processing. For better inter-
action quality, dialogue systems must be incremental at a much more �ne-grained
level.4 In contrast to conventional, ‘turn-incremental’ systems, the granularity of
events in the approach to be described can be as low as a few milliseconds – short
enough to support quick system reactions and hence better responsiveness and closer
feedback loops. Such a �ne granularity may not always be necessary – however, it is
easy to reduce granularity in a system by combining units, whereas it is very hard to
increase it ex post.
Among others, Aist et al. (2007b) showed that incremental understanding may be

advantageous over non-incremental understanding in human-computer dialogue and
Aist et al. (2007a) showed e�ciency gains for incremental processing in a dialogue sys-
tem. Here, we aim to account for fully, �ne-granular incremental dialogue processing,
where the whole system (instead of only select modules) works incrementally.

The topics of this thesis are the necessary changes in the system architecture to
support (�ne-granular) incremental processing, the evaluation methodology for in-
cremental processing, and the development and performance analysis of low-level
incremental processing modules for SDSs.

Thesis Statement

Given the goal of better interaction quality and the topic of incremental processing, it
is argued that:

�ne-granular incremental and proactive processing are viable tech-

niques for more naturally interacting spoken dialogue systems.

For this statement to be true, it needs to be shown that incremental processing in
an SDS is both feasible and successful, and that it helps to develop more naturally
interacting SDSs. �is thesis presents an architecture for incremental spoken dialogue
processing, outlines a notion of incrementality and presents evaluation metrics which
are deemed useful to assess the success of incremental processing.
�e evaluation metrics are put to use in the analysis of incremental speech recogni-

tion (iSR) which is shown to perform su�ciently well to be of use in a spoken dialogue
system and some systems based on iSR are shown to handle new behavioural patterns
in human-computer interaction which are not possible for non-incremental SDSs:

4�e more �ne-grained processing is what is referred to in the dialogue community when the term
“incremental dialogue processing” is used; see for example (Schlangen and Rieser 2011).

16

immediate visual response in Chapter 5.6, and sub-turn incremental behaviour as a
form of collaboration on utterances in Chapter 6.1.2.
Additionally, it is argued that some decisions in dialogue cannot be taken purely

reactively (i. e. a�er all relevant input has become available) but must be taken proac-
tively (i. e. where acting early with the possibility of doing wrong is better than acting
late with a higher certainty of success). SDSs taking proactive decisions cannot base
these only on hypotheses of what has happened so far but must also take into account
what is expected to happen in the near future and must be able to act even though
only partial information about the future is available. �is is again exempli�ed with
SDSmodules close to the audio signal: Chapter 6.2.6 shows how a system can estimate
micro-temporal aspects of ongoing speech. �ese estimates can be used to speak
in synchrony to the user, to an extent that compares well to human performance in
this task, showing that real-time end-to-end incrementality (that is, including all
processing lags between speech input and output) is feasible. Chapter 7 treats the
topic of incremental speech output, which is necessary to take action if only parts
of the output have been decided on, investigates the quality trade-o� involved when
limiting the synthesizer’s lookahead into the future, and �nds that incremental syn-
thesis allows for otherwise unrealizable conversational behaviour, such as starting
early, or changing one’s mind while speaking.
�is thesis focuses on “lower-level” components for spoken dialogue processing:

speech recognition, speech synthesis, and dialogue �ow estimation. �ese building
blocks are a prerequisite for further, “higher-level” components (such as understanding
or reasoning) to be able to take advantage of incremental processing, to actually take
complex decisions at all times in the dialogue and not just at the end of a user’s turn
(or the lack of a user’s turn). Regarding the higher-level components for incremental
dialogue processing, some progress can already be seen (Buß and Schlangen 2011;
DeVault, Sagae, and Traum 2009; Sagae et al. 2009; Schlangen, Baumann, and Atterer
2009), so the components developed here do not stand solitarily but are part of
a growing eco-system of components for incremental SDSs. Within the �eld of
incremental spoken dialogue processing, they lay foundations for those parts of the
processing chain that are further away from the audio signal.
Incremental processing is useful beyond SDSs in the more general �eld of spoken

dialogue processing where the focus is di�erent than human-computer interaction
through dialogue. Some such areas are simultaneous interpreting (Amtrup 1999;
Bangalore et al. 2012), overlistening for call-center agent support (Farrell 2004), or
simultaneous transcription (e. g. of interviews). �ese areas are not actively investi-
gated in this thesis, but the requirements towards their “lower-level” components are
likely to be very similar to those developed here.

17

1 Introduction

1.1 Thesis Outline

Chapter 2 places the work into context. �e chapter reviews �ndings on dialogic
communication per se, and architectures for dialogue processing, giving a general
overview of the components required for processing dialogue and the requirements
that an ideal architecture for conversational dialogue processing should meet. �e
chapter closes with some state-of-the-art systems and discusses how those relate to
the work presented here.
Chapter 3 discusses previous approaches to incremental processing and explains

the notion of incremental processing used, in which bits of information are added in a
piece-meal fashion. When bits of information are hypothesized, when the hypothesis
becomes reliable, and how o�en bits of information are replaced with other infor-
mation are the major criteria identi�ed regarding the performance of incremental
processing. A detailed view of evaluation metrics that cover the above-mentioned
aspects and their interrelations is developed, as well as how trade-o�s between the
metrics can be made.
Based on the account of incrementality, Chapter 4 presents a so�ware architecture

for building incremental SDSs and gives a high-level overview of InproTK, a toolkit
implementation of this architecture.
Chapter 5 gives a detailed assessment of incremental automatic speech recognition

(iSR) a�er �rst presenting the algorithmic basics for standard, HMM-based speech
recognition, explaining how it can easily be incrementalized, and describing Intel-
ida, the workbench for evaluating iSR.�e evaluation then analyzes iSR on several
corpora detailing the di�erent metrics outlined above, and investigates stability of
results as well as behaviour for n-best processing. We then present two optimization
techniques that rate favourably when trading timeliness against other qualities rel-
evant for incremental processing. �e usefulness of a slightly more advanced and
problem-speci�c technique is shown in a �rst example application that signi�cantly
improves in terms of responsiveness when using optimized iSR and that would not
be possible with non-incremental speech recognition.
Having dealt with low latency processing, Chapter 6 turns to predictive processing.

Predictive processing is necessary in order to actively in�uence the dialogue �ow.
Firstly, a �oor tracking component is introduced and put to use in a second example
application that collaborates on utterances with the user. Secondly, and further
increasing the temporal granularity at which decision making in a system may work,
the micro-timing of the user’s speech �ow is modelled, which allows to predict the
remaining duration of words currently being spoken. �is is shown to work with
reasonable performance and an example application uses the predictions to shadow
a speaker’s utterance, showing that end-to-end incrementality is indeed possible in
real-time.

18

1.2 Contributions

Chapter 7 turns from input to output processing, primarily incremental speech
synthesis (iSS). A�er giving some background on speech synthesis and explaining
how it is incrementalized in the InproTK iSS component, a series of experiments
investigates (a) the merit of using iSS in a highly dynamic environment (which dia-
logue certainly is), (b) the integration of iSS with incremental NLG to form a fully
incremental speech output pipeline, and (c) the trade-o�s between incremental timing
aspects and resulting quality when incrementally producing prosody.
Chapter 8 brie�y summarizes the major �ndings of the thesis work and concludes

that incremental and predictive processing is indeed feasible to an extent that it can
help improve interaction quality and should form one of the architectural foundations
of next generation spoken dialogue systems. �e chapter also brie�y sketches some
ideas for future work.

1.2 Contributions

�is thesis contributes:

• an evaluation methodology for assessing incremental processing performance
(Section 3.3.2), an evaluation workbench implementing the metrics for incre-
mental speech recognition (Section 5.3), a detailed analysis of these aspects
in iSR (Section 5.4), as well as the idea of optimization methods that lead to a
better trade-o� of incremental performance metrics, speci�cally: reducing the
degree of non-monotonicity (Section 5.5);

• a so�ware architecture for developing incremental spoken dialogue systems
based on the IUmodel by Skantze and Schlangen (2009) (Chapter 4) with fully
integrated iSR (Section 5.2.1) and iSS (Section 7.3.1) components, as well as �oor-
tracking (Section 6.1) and micro-timing prediction (Section 6.2) capabilities,
which is released as free and open-source so�ware;

• incremental HMM-based speech synthesis embedded into the incremental
architecture providing incremental access to manipulations of content and
delivery parameters on various levels (Section 7.3.1) which provides for highly
interactive system behaviour (Sections 7.4, 7.5);

• a system that co-completes a user’s utterances (given that the content is known),
showing that real-time end-to-end incrementality in connection with proactive
behaviour works in practice (Section 6.2.6); and

• an incremental system that interactively collaborates with the user on utterances
with the resulting interactions being more natural and more reactive than a
baseline system without incremental processing (Section 6.1.2).

19

1 Introduction

1.3 Previously Published and Co-authored Material

�is thesis has not been conceived in an isolated environment and much of its content
has previously been published, at conferences and elsewhere. �is section clari�es
which portions have previously been published (and where), and details the present
author’s share in previously co-authored material.

Evaluation of Incremental Processing �e approach to incremental processing
and its evaluation has previously been published in (Baumann, Atterer, and Schlan-

gen 2009) and more comprehensively in (Baumann, Buß, and Schlangen 2011) on
which much of Chapter 3 is based (including the structure of the chapter and some
of the actual, revised text). Chapter 3 additionally introduces a formalism for the dy-
namic evolution of incremental hypothesis sequences which is also used to formulate
the evaluation metrics in that chapter and the iSR optimizations in Section 5.5.

INPROTK �e Incremental Processing Toolkit InproTK, presented inChapter 4, has
previously been described in (Baumann, Buß, and Schlangen 2010), (Schlangen et

al. 2010), (Baumann and Schlangen 2012d), and (Baumann and Schlangen 2012e).
�e descriptions have been expanded and more details have been added, as well as
the concept of triangular data processing.

Incremental Speech Recognition �e InproTK iSRmodule, its methods for iSR
optimization, and evaluation metrics have �rst been reported on in (Baumann, At-

terer, and Schlangen 2009) and (Baumann, Buß, and Schlangen 2011), from which
some text is borrowed. All experiments in Chapter 5 have been re-run to re�ect
bug-�xes and the analyses and discussions have been considerably extended. �e
evaluation of N-best processing (which was �rst considered in Baumann et al. 2009)
has been completely reworked to focus speci�cally on iSRmetrics (instead of under-
standing as in Baumann et al. 2009).

INTELIDA �e workbench for iSR evaluation presented in Section 5.3 has been pub-
lished, together with a viewer for incremental data, TEDview, in (Malsburg, Bau-

mann, and Schlangen 2009). While TEDview was developed primarily by Titus von
der Malsburg, Intelida is the present author’s work. Descriptions have been greatly
expanded and updated to re�ect the many changes since 2009, especially the new
integrated GUI tool for evaluation.

Floor Tracking �e �oor tracking component as well as the example application
to the PentoSelect system presented in Section 6.1 have been �rst presented in (Buß,

20

1.3 Previously Published and Co-authored Material

Baumann, and Schlangen 2010). Experiments and results are re-reported and the
overall structure of the paper has been re-used in the section. �e architectural
description of �oor tracking has been extended, and discussions extended.
Overall, while Okko Buß is the �rst author of the aforementioned paper, care has

been taken to report only the present author’s �ndings, or to point out the taking over
of material.

Micro-Timing Prediction Section 6.2 is based on (Baumann and Schlangen 2011),
re�ecting the structure and re-using much of the text. However, analyses have been
performed again and in more depth and many details have been added. �e section
on estimating the reliability of predictions is entirely new.

Incremental Speech Synthesis �e requirements for iSS and the InproTK iSS
component have previously been described in (Baumann and Schlangen 2012c) but
these descriptions have been considerably extended in Chapter 7. �e experiments
on incremental prosody production have been reported in (Baumann and Schlangen

2012a) and much of Section 7.6 is based on that material but has been extended and
deepened.

Integration with iNLG �e integration with iNLG originally appeared in (Busch-

meier et al. 2012) and the system description in Section 7.5 has been re-focused to
only those parts that the present author is primarily responsible for.
Hendrik Buschmeier has de�ned the domain and performed the evaluation as well

as the statistical analysis, which is also pointed out in the relevant subsections.

21

2 Spoken Dialogue and Spoken Dialogue Systems

�e naturalness of interaction (and with it the potential conversational competence)
of a system depends to a high degree on the system’s architecture which must provide
for the sorts of behaviours that natural interaction entails. Of course, decisions on
the architecture can only be taken a�er carefully modelling the problem at hand, in
the present case spoken dialogue.
�is background chapter looks at models for dialogic communication, especially

regarding the “low level” parts of dialogue and communication and only lightly
touching the “high level” issues such as understanding or reasoning. �is stands in
contrast to other descriptions of dialogue modelling which o�en only ever start on
the level of full turns (e. g. Jurafsky and Martin 2009, Ch. 22; McTear 2002, pp. 55-75),
and completely disregard in-turn processing.
We then discuss the general approaches to the architecture of spoken dialogue

systems and describe the processing components conventionally used before pointing
out some state-of-the-art example systems, and the extent to which they re�ect the
requirements for naturally interacting spoken dialogue systems will be examined. �is
analysis forms the basis for the approach to incremental spoken dialogue processing
taken in the subsequent chapters.

2.1 Modelling Dialogue

�is section deals with dialogue modelling from the bottom up. We start our de-
scription with a basicmodel of communication in Subsection 2.1.1, then discuss how
complex communication systems can be managed through the use of layering in
Subsection 2.1.2 and introduce how behaviour emerges in a complex system (which,
as will be developed, dialogue certainly is) in Subsection 2.1.3.
A�er this discussion of communication per se, Subsection 2.1.4 approaches spoken

dialogue more closely by discussing the issue of grounding between communicative
partners. Acoustic communication through a common medium (usually air) is
not trivial, in part because interference e�ects prohibit simultaneously sending and
receiving messages. In plain words: it is hard to listen carefully to someone speaking
while simultaneously speaking oneself. Human dialogue deals with this limitation by
two means: (a) the use of a backward channel which is discussed in Subsection 2.1.6
and helps with grounding and channel management, and (b) channel management
proper, discussed in Subsection 2.1.5. Channelmanagement determines who is allowed

22

2.1 Modelling Dialogue

INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION

NOISE

SOURCE

MESSAGEMESSAGE

SIGNAL RECEIVED

SIGNAL

Figure 2.1:�e Shannon-Weaver model as shown in (Shannon andWeaver 1949, p. 7).

to speak when in a dialogue, that is only towards the end of our discussion of dialogue
modelling we �nally reach the fact that in dialogue predominantly only one person
speaks at a time – that people take turns speaking. �is fact may seem self-evident
at �rst thought and this is also the level at which the modelling of dialogue content
o�en only begins. However, we try to develop that even though turn-taking is the
major organizational principle, content is exchanged on a far more �ne-grained
level between dialogue participants and it is the goal of this thesis to show how this
exchange can be enabled in a system (by using incrementality) and to show that it
may improve a dialogue system’s performance.
As we are primarily interested in themeans of dialogic communication, not in the

content of the dialogue, the discussion of dialogue modelling closes at the level of the
dialogue turn. For higher-level dialogue modelling the reader is referred to Jurafsky
and Martin (2009, Ch. 22), McTear (2002, pp. 55-75), Jokinen and McTear (2010, Ch.
2), and especially to Jokinen (2009).

2.1.1 The Shannon-Weaver Model of Communication

�e now classic model of communication formalized by Shannon (1949) and popular-
ized byWeaver (1949) is shown in Figure 2.1. Information from a source is transmitted
in the form ofmessages which are transmitted as signals and reverse-transformed by a
receiver to reach their destination.
Regarding the application of the model to the problem domain of spoken dialogue,

we can conveniently rely on Weaver’s own words:

23

2 Spoken Dialogue and Spoken Dialogue Systems

When I talk to you, my brain is the information source, yours the destina-
tion; my vocal system is the transmitter, and your ear and the associated
eighth nerve1 is the receiver. (Weaver 1949, p. 7)

Weaver does not explicitly mention the signal that is communicated via the com-
munication channel (all that lies between the transmitter and receiver, shown as a
small central square in the �gure). In spoken communication, an acoustic waveform
forms the primary signal to be communicated, that is, the signal that forms the ba-
sis for communication. In face-to-face spoken communication, the channel which
transports the sound wave is plain air.
Signals may be perturbed by noise on their passage through the channel, which,

in the model, is introduced by a speci�c noise source. In fact, it is convenient to
assign all perturbations, whether they arise from the channel, or the transmitter, or
the receiver to this noise source as well, so as to only have one such source in the
model (which also gave rise to the term noisy channel model). An important aspect of
successful communication lies in modelling the noise source itself and in determining
the amount of redundancy in the signal that is necessary to allow the receiver to
correctly decipher the original message given the received signal.
�e model of communication that we’re discussing was developed as part of a

mathematical theory of communication (Shannon and Weaver 1949), and in the
context of information theory. �us, a great amount of detail is spent on specifying
properties of the signal, the channel, and the noise source so as to allow for an
unambiguous reverse transformation of the perturbed signal into the original message.
�ere seems to be an assumption that either the correct message or no message at all
will be extracted by the receiver (or that there are methods in place that allow for the
unambiguous validation of received messages). Another assumption is that receivers
and senders match each other perfectly.
For the context of spoken dialogue, it must be pointed out that the received signal

may be so much perturbed by noise, or the receiver may be mismatching the transmit-
ter to such a degree that the original message may not be recovered but that instead
the received message di�ers from the original. In fact, if my brain is the information
source and yours is the destination, and given that our brains di�er, the messages
must di�er. More importantly, there is currently no way of �nding out whether the
original message in my brain equals the message that reaches yours. Section 2.1.4
below will come back to this problem.

1�e outer and middle ear, the nervus vestibulocochlearis and the nucleus cochlearis comprise the
human auditory system (Greenberg 1996), which Weaver seems to imply as the receiver.

24

2.1 Modelling Dialogue

2.1.2 Layers of Communication

Only rarely are communication systems as direct as in Figure 2.1 above, where the
message is only encoded and decoded once to become a primary signal. When con-
versing over the telephone, for example, sound waves are not directly transported by
air (only to the microphone and from the loudspeaker onward) but also by some sort
of telephone machinery. �is telephone machinery can itself be modelled using the
above terminology with the microphone acting as transmitter, the telephone cord as
the channel through which voltage di�erentials are transported, and the loudspeaker
as the receiver. Notice that the sound wave, which had been the signal in the primary
level, becomes the message on the lower level, with the sound wave message being
signalled by voltage di�erentials (or zeros and ones in modern telephony).
�is encapsulation forms the basis for communication network standards (like the

OSImodel; Tanenbaum 1981; Zimmermann 1980) which are using the above layering
technique as a method of abstraction: details of the communication protocol on lower
levels are decoupled and partially hidden from the higher levels of the communication
stack. In the following, we examine how well this engineering approach works from
a scienti�c/linguistic viewpoint. While layering (or, more formally, strati�cation)
will be the result of our analysis, we have to start by looking at how to structure the
language communication system.
Communication is a complicated business, and hence communication systems are

complex systems which are potentially di�cult to study. Following the analytical
method, a large problem can be studied by dividing it into smaller sub-problems
while keeping track of the division process (Descartes 1824, pp. 141-142). For this, we
group similar phenomena to form the sub-problems which can then be looked at in
isolation. To keep things simple, we will abstract away from details of phenomena
which can be deemed irrelevant in the analysis of the sub-problems. (�at is, we
assume that small inaccuracies in the analysis of sub-problems will have only small
e�ects in the overall analysis; see Subsection 2.1.3.) Transferring this methodology
to the analysis of systems and their structure, we try to di�erentiate the parts that
comprise the system (we will call these parts sub-systems or components) and �nd
the relations between those parts.
Spoken language is probably the most versatile, sophisticated and hence most

complex communication system the humanmind has developed. Language comprises
many di�erent phenomena (sound waves, words, phrases, ideas, to name a few) which
interact in many ways and it may be obvious that some sort of separation of the
di�erent sub-tasks is necessary (or at least helpful) when analyzing and modelling
dialogue. �us, we have to take close looks at the language system and its structure.2

2An excellent discussion and di�erentiation of the terms system and structure can be found in
(Serébrennikov et al. 1975, pp. 6-15).

25

2 Spoken Dialogue and Spoken Dialogue Systems

Table 2.1: �e conventional division of linguistics into subdisciplines.

pragmatics the study of meaning in context
semantics the study of meaning
syntax the study of sentence structure
lexicology the study of words
morphology the study of forming words
phonology the study of a language’s sound system
phonetics the study of speech sounds

�e structure of language as a system has been analyzed by many and for a long time,
not least intuitively by those who construct or enjoy poetry and other plays on words.
�e history of scienti�c analysis of language is probably as old as science itself.

Linguistics has been conventionally structured – using the scienti�c method – into
a number of subdisciplines that mostly follow a layering approach. Textbooks o�en
handle the �elds separately (e. g. Grewendorf, Hamm, and Sternefeld 1989). Fields
build on each other, as can be seen in Table 2.1, but the question of organization into
�elds is o�en seen primarily by tradition (Grewendorf,Hamm, and Sternefeld 1989,
p. 38).
In contrast, Serébrennikov et al. (1975, pp. 33-70) discuss the history of structuring

the language system with regards to how well a given structure �ts the problem.
�ey, too, �nd strati�cation, i. e. the structuring in layers the most �tting analysis
of the language system. According to Serébrennikov et al. (1975, pp. 71-76), a layer
(or stratum) can be characterized by a homogeneity in structure and content, and
by an inventory of elements which are atomic from the point of view of this layer
(i. e. they cannot be uniformly sub-divided with the methods of this layer). Layers
are autonomous in the sense that their internal structuring, the rules that they follow,
is independent of other layers. However, layers are interdependent with other layers
in the sense that there are connections between layers and relations between the
layers’ elements. �ese relations are representational, i. e. some element on one
layer is represented by or itself represents one (or more) elements on another layer.
Serébrennikov et al. (1975, pp. 78-79) argue that relations are not constitutional, i. e.
one element does not comprise (or is not comprised of) elements of other layers. I
would argue that the di�erence of whether a word is represented by some phonemes or

26

2.1 Modelling Dialogue

recombine souds to words

recover structure of sequence

determine meaning of structure

recover idea described by message

represent words through sounds

sequentialize structure to word stream

determine structure to convey meaning

find message that describes idea

Figure 2.2:�e chain model of communication.

whether it is constituted by these phonemes is of little relevance in practical systems.3
In short, Serébrennikov et al. (1975) give a detailed and convincing argumentation for
the well-known linguistic partitioning into layered subdisciplines such as phonetics,
phonology, morphology, syntax, semantics, and so on.
Where Serébrennikov et al. (1975) embrace layering from a very theoretical, systems-

based perspective, Levelt (1989) gives proof for layering from a psycholinguistic view-
point, with a focus on speech production. Levelt’s partitioning into levels (conceptu-
alization, formulation, and articulation) is less �ne-grained than the di�erentiation
of linguistic �elds, as he argues that only these levels do not interact beyond sim-
ple transmission of information. In contrast, the other, more �ne-grained levels
(such as grammatical and phonological encoding) can be shown to interact more
closely (Levelt 1989, p. 15). As a conclusion, the autonomy/interdependence of mod-
ules and granularity of sub-division (be it into layers or otherwise) cannot be answered
absolutely. Rather, it is a decision to be weighed for the goals at hand.

3However, the notion of representation instead of constitutionmore easily explains why it is possible
that phonemes may be ambisyllabic, that is, belong to two adjacent syllables (Swadesh 1937).

27

2 Spoken Dialogue and Spoken Dialogue Systems

Layering communication along the Shannon-Weaver model results in the chain
model of communication (Pétursson and Neppert 1996, p. 35) as shown in Figure 2.2:
an idea (e. g. “I want the soup to be saltier”) is to be transmitted from one to another
communicator and transformed multiple times when it passes from one processing
layer to the next. �e processing layers use di�erent protocols and message forms for
their tasks. All messages are ultimately transformed to, and all protocols are ultimately
based on some physical transport layer. For speech, this is the audio waveform.
Both language and computer networks are communication systems. �us, re-

applying the models for computer networks to language may be a worth-while en-
deavour. Taylor (1988) and Taylor andWaugh (2000) carry the ideas of the OSImodel
for communication systems into the domain of human-computer interaction and
speci�cally to dialogue analysis with their layered protocol theory (LPT). In LPT, a
layer is constituted by the fact that there may be feedback between the sender and
receiver of messages on this layer. �is distinguishes their layers from the simple
example for layers in the telephone example at the beginning of this subsection, which
are seen as “merely stages in the coding and decoding of a message, and not as com-
municators” (Taylor 1988, p. 186). Feedback is necessary when high-level messages
cannot unambiguously be determined based on the incoming message. �e feedback
messages on a lower layer that are passed back and forth in the process of establishing
the message on a higher level is called the protocol loop (Taylor and Waugh 2000,
p. 195) and extends the pure chain model of communication by allowing sub-systems
to communicate back and forth independently to establish a higher-level message.
In LPT, layers are seen as independent and autonomous (as they o�en are in

networked computer systems). Sub-problems of communication are handled in-
dependently from the other system components but in direct coupling with their
respective counterpart in the other communicating system. �e following subsection
further investigates the concept of coupling.

2.1.3 Emergence of Behaviour in Complex Systems

�e method of divide-and-conquer that has been the guidance in the previous sub-
section and which helps to manage the complexity of language by dividing it into
manageable sub-components, has been criticized as reductionist: phenomena are
grouped and looked at in isolation. A main question is: can all phenomena be han-
dled in this way? �at is, is it possible to assign each phenomenon to one (or only a
few) of the system’s modules, but not to the interaction of components in the system
as a whole? �e answer is: no.
�e question is not restricted to dialogue (or to linguistics) but exists in many

scienti�c domains. Coming from the �eld of biology, Bertalan�y approaches similar
problems in his General Systems�eory (Bertalan�y 1972). General Systems�eory

28

2.1 Modelling Dialogue

uses the more holistic concept of emergence where phenomena may emerge from
the interaction of separate modules. In other words, phenomena are not necessarily
assigned to a sub-component but to the combination of sub-components and their
interrelation.
�e ordering of speakers in a dialogue is a perfect example of emergence: while

it has been recognized that prosody plays an important role in determining speaker
change (Gravano andHirschberg 2011), it is only together with word information that
turn-taking events are registered by human listeners with full performance (Wesseling,
Son, and Pols 2006).�us, it would remain unclear whether a component for word
recognition, or one for prosody analysis should be in charge of turn-taking analysis.
More importantly, while it is possible to have one module in the system take care of an
issue that di�erent linguistic layers are involved in, behaviour also emerges from the
combination of modules across independent systems: one of the largest in�uencing
factors for speaker change arises from the reaction of the interlocutor, who has a large
share in determining speaker change.
As a result, modelling of complex behaviour such as turn-taking must take into

account the other speakers involved and conclusions can only be drawn from in-
vestigations that take into account the interaction between speakers and all relevant
sub-systems. Studying complex behaviour purely on the basis of corpus experiments,
for example, is likely to fail. �e question of relevance of sub-systems for �nal system
behaviour is also stressed by Larsen-Freeman and Cameron (2008) who explain why
some results that seem to work in isolation fail to work in full systems.
Another criticism of the divide-and-conquer approach from above is the problem

of stability: it is assumed that small inaccuracies or errors in one component will
only have a small e�ect on the overall outcome in the full system. �is assumption is
called linearity but real systems turn out to be highly non-linear and chaotic: small
changes o�en have large e�ects. Dialogue is highly non-linear: initially small mis-
understandings are o�en only resolved some utterances later in which case all that
has been said in the meantime may have to be invalidated and reconsidered. Timing
is also highly non-linear: if I fail to jump in with my witty remark now, I will likely
be unable to do so one or two words later. In many cases, I will have to completely
rephrase or give up on commenting altogether.
Complex systems are stabilized by coupling and attractors as outlined by Larsen-

Freeman and Cameron (2008). Coupling is the close interaction of components across
di�erent independent systems (and can also be achieved by ‘communicators’ in LPT;
Taylor and Waugh 2000). �e coupled system is steered towards attractors, which are
states that avoid non-linearities breaking havoc and instead provide relative stability.

29

2 Spoken Dialogue and Spoken Dialogue Systems

To conclude, strati�cation (layering) is an important principle in language itself and
hence should be considered in language processing systems. Further, strict layering has
many implementational advantages (see next section) but it is somewhat insu�cient
to fully deal with all language phenomena. Some phenomena only emerge when
combining components to form a system and the relations for combination should
ideally be more powerful than simple chaining of processing components as in the
chain model of communication. In the approach described below (see Chapters 3
and 4) the implementation is limited to a principled architecture for layering of
components that at least avoids some of the disadvantages of conventional layering
implementations by allowing faster reaction and shorter feedback loops through
incremental processing. While themodule architecture to be developed is relatively
traditional, the data that is produced in the di�erent layers follows the connectionist
approach and enables the principled interaction with minimal elements from other
layers that represent partial information, permitting modules deep access to other
modules’ data.
In any case, when developing systems that interact through dialogue with humans,

the idea of dialogue as a coupled system should be kept in mind: all SDS actions will
be responded to by the human interlocutor, who may either balance or multiply small
mistakes, depending on whether a stabilizing attractor is available and su�ciently
attractive. An example application in which small errors are balanced by the human
user is given in Chapter 5.6.
�e discussion above has stressed the view on the overall system but in this thesis

only small, partial systems will be built and some evaluations will even operate on
individual modules in isolation. �e author hopes that he has paid enough attention
to the full system perspective while working on these individual modules, so that the
results obtained will remain valid also in complete SDSs.

2.1.4 Establishing Common Ground

A fundamental goal of communication is the establishment of mutual understanding.
When conversing, we want to share understanding. For this, the conversants need
acknowledgement that their messages are being understood, that is, that the conversa-
tion is actually functioning. One of the strengths of natural language is its ambiguity
(which allows for compact representations and can most o�en be disambiguated
through context). However, misinterpretations are also possible: Shannon’s model
(cmp. Subsection 2.1.1) expects that ‘faulty’, uninterpretable messages are identi�able
but this is o�en not the case for natural language messages where ‘faulty’ messages
are instead just mis-interpreted as some other message. As faulty messages cannot
simply be identi�ed and re-queried from the sender, a di�erent, more powerful and
more �exible method is required to negotiate whether mutual understanding is be-

30

2.1 Modelling Dialogue

ing achieved. In dialogue, grounding is the method to establish that the dialogue
participants are in fact talking about the same, shared thing.
Grounding happens on many conversational levels, and o�en subconsciously as

part of the joint activity between speaker and listener that is dialogue interaction
(Clark 1996). Grounding happens through the acknowledgement of ‘contributions’
which are grouped in ‘adjacency pairs’ (Scheglo� 1968), for example question/answer
pairs or greetings. �e size of these contributions can be argued about but o�en
full utterances are seen as contributions in dialogue. Going a bit further, I believe
that grounding can be more �ne-grained, with subtle signals from the listener to the
speaker and back. Incremental processing can hence signi�cantly improve a system’s
grounding abilities and some results highlighting this ability will be shown in an
example application in Chapter 6.1.2.

2.1.5 Taking Turns

�e previous subsectionmentioned ‘contributions’ without detailing their progression
in spoken dialogue. �e present subsections aims to clarify this matter.
Spoken dialogue is naturally transmitted through air and thus over a shared com-

munication channel. �e shared channel has to be divided (to allow for the back-and-
forth interaction that allows the establishment of common ground) and there are (at
least) two constraints on this: (a) shadowing and interference e�ects of overlapping
audio signals in the absence of channel division, and (b) limited brain resources that
forbid simultaneous production and reception of speech. �ere are several ways
that a channel could be divided by. For example in digital communication, modems
divide the common channel (the wire) by transmission frequency. Humans do not
simultaneously speak at di�erent frequencies – instead they largely time-divide the
channel. �e job of channel management is thus to coordinate which participating
communicator speaks when during the dialogue (also termed: ‘who holds the �oor’).
Time-dividing the shared communication channel appears to be a language universal
(Miller 1963, as cited by Duncan and Niederehe 1974) and the sub-system of natural
dialogue dealing with it is called the turn-taking system.
A “simplest systematics for the organization of turn-taking for communication” has

been developed by Sacks, Scheglo�, and Je�erson (1974) which states that a dialogue
participant’s speech is constructed from turn-constructional units (TCUs) which are
segments of speech of various sizes for which the duration can be projected by the
listener and which allows a speaker change to follow. A turn-constructional unit

31

2 Spoken Dialogue and Spoken Dialogue Systems

ends in a transition relevance place (TRP), at which the �oormay transition from the
current speaker to another.4
�ere are some relatively simple rules for the turn allocation to a next speaker and

according to Sacks, Scheglo�, and Je�erson (1974), turn-taking is managed locally,
that is, �oor changes are determined from the dialogue participants’ behaviour only
in the vicinity of the decision to be taken.5
For themost part, turn-taking is notmanaged on the content layer of the interaction:

while the �oor can be verbally assigned to someone, most o�en this is done by other,
more subtle means (gaze, gesture, posture shi�s, prosody). Additionally, turn-taking
seems to be dealt with partly on the sub-conscious layer: even if interlocutors disagree
or have an argument, they follow the turn-taking rules, at least to some degree.
Turn-taking signals that inform about upcoming TRPs have been investigated in

great depth (Duncan and Niederehe 1974; Gravano andHirschberg 2011) but o�en
based on corpus studies which leave out the dynamics of dialogue as a coupled system
that was outlined above. Section 6.1 covers turn-taking and turn-taking signals.
However, the detection of turn-taking signals is only rudimentary in the implemented
system.

2.1.6 Feedback and the Backward Channel

Dialogue requires bi-directional communication for which various variations can
be conceived. A common channel can be divided so that messages can be passed
along in both directions simultaneously (o�en called ‘duplex’), or the channel can
be time-divided, which is called simplex or ‘half-duplex’ communication. O�en,
communication that involves longer messages is sometimes divided into one content-
bearing channel and an additional control or backward channel where status about
delivery on the main channel is reported (for example, the �le transfer protocol, FTP,
uses two distinct connections for control and data; Postel and Reynolds 1985).
At �rst sight, turn-taking appears to be su�cient to organize dialogue in light of

the single (acoustic) channel using time-sharing. However, this is an over-simpli-
�cation: dialogue also involves what Yngve (1970) has �rst called “back-channel”
utterances that overlap with ongoing turns (without being interpreted as out-of-place
or as interrupting an ongoing turn; Duncan and Niederehe 1974). Such utterances
can be short feedback like “yeah”, “good”, “right”, conversational grunts (Ward 2006),
audible inhalation, lengthening or so�ening of delivery in the primary channel, and

4Sacks, Scheglo�, and Je�erson (1974) emphasize the “place”-aspect in TRPs, possibly to avoid the
discussion of whether a TRP is a point in time (without temporal extent), or a period in time (with
temporal extent).

5�is is actually what distinguishes dialogue from e. g. group discussions where lists of next speakers
are being kept and speaker turns are assigned by a discussion leader.

32

2.2 Components and Architecture for Spoken Dialogue Systems

so on, that are used to give feedback on a more �ne-granular level than that of the
full turn.
�us, human dialogue is neither simplex nor duplex but rather somewhat one-and-

a-half directional: the primary, content-bearing channel works simplex, but there is
also a backward channel, transmitted over the same signal path, on which feedback
regarding the current state of grounding is given, and which supports the primary
mechanisms for channel assignment and grounding.
Speakers integrate feedback on the back-channel (or the absence of feedback) into

their ongoing turn on the forward channel. �us, failing to present a back-channel
where it would be appropriate may disturb the dialogue �ow.

2.2 Components and Architecture for Spoken Dialogue Systems

SDSs are modular not only to mirror the structure of speech as a communication
system but also for engineering reasons: developing large, monolithical systems is
ine�cient and at some size typically becomes impossible, especially when the system
should be adaptable and extensible (Parnas 1979). �us, if the system is not to be
monolithical, the questions of the system’s components and their interconnection,
i. e. the question of the system architecture arises.
By and large, the partitioning of the SDSs into components – especially for those

on the lower level – does not vary much across systems and follows the layers of
communication outlined in Subsection 2.1.2 above. A short description of these
standard components and their tasks is given in Subsection 2.2.1. Components can be
combined to form a system in several ways and Subsection 2.2.2 discusses approaches
to this aspect of the architecture. Finally, Subsection 2.2.3 describes the architectural
decisions taken for the toolkit developed as part of the thesis.6

2.2.1 Components of Spoken Dialogue Systems

In practice, the partitioning of the system into components varies little between a
broad range of spoken dialogue systems and the following paragraphs brie�y describe
the major components in the order that they are triggered when a user starts to talk
to the system.

Voice-Activity/Turn-Taking Estimation One basal (but very important) task for
a dialogue system is to determine whether the user is speaking or not. In speech
recognition, this is called voice activity detection (VAD) and is used to reduce the
amount of processing on silences preceding and following the user utterance. In a

6�e toolkit itself, InproTK, is described in detail in Chapter 4.

33

2 Spoken Dialogue and Spoken Dialogue Systems

dialogue system, voice activity detection is additionally required to determine whether
the user starts speaking (i. e. requests the �oor) or �nishes to speak (i. e. releases the
�oor), presumably waiting for a system response; a dialogue system should deliver
it’s own turns (i. e. take over and give up the �oor) accordingly. Standard dialogue
systems use the VAD’s endpointing to determine when a user turn is over and the
onset to determine user barge-in (i. e. the user interrupting the system’s turn). A
time-out can be started when the system releases the �oor allowing the user only
a certain lag before she starts her own turn. For more complex, conversationally
competent spoken dialogue systems, we prefer the term turn-taking estimation: the
task of determining the user turns’ beginnings and ends. Turn-taking estimation will
be covered in Chapter 6.
�e decision of whether the interlocutor is speaking or not may sound trivial, but

it is in fact quite hard as SDSs are o�en confronted with speech over the telephone,
with background noise, and a range of di�erent speakers; thus, the �eld of VAD has
remained an active area of research.7 In dialogue, the end of a user’s �uent stretch
of speech does not necessarily also indicate the end of the user’s turn but could also
indicate a user hesitation, complicating the issue of turn-taking estimation.

Speech Recognition Speech recognition (also called automatic speech recognition,
ASR) is the process of determining the words that were spoken in a speech waveform.
We speak of rich speech recognition for speech recognizers that additionally output
durations, prosodic aspects, and other properties of recognized words (which may be
useful for disambiguation in further processing). Speech recognition is dealt with in
great detail in Chapter 5.

Natural Language Understanding Natural Language Understanding (NLU) in-
terprets the meanings of the words that have been recognized in the previous step.
�is may include syntactic and semantic analyses, integration with dialogue history,
and so on. Ultimately, some logical form of the user utterance is produced which de-
scribes the user turn’s meaning in context. Individual units of relevant user behaviours
are conventionally called dialogue acts (DA).

Dialogue Management �e dialoguemanager (DM) contains the system’s dialogue
state, updates the state by integrating user contributions (based on the incoming DAs
from NLU) and determines from the updated state what the system should say next
(in terms of one or more output DAs to pass on to natural language generation, NLG).

7All Interspeech conferences between 2007 and 2012 have featured full sessions speci�cally on the
topic of VAD.

34

2.2 Components and Architecture for Spoken Dialogue Systems

Domain Reasoning A domain reasoning component connects the dialogue system
to other relevant systems that are necessary in the domain, for example information
and booking systems for SDSs that handle the booking of airline tickets, hotel rooms,
or pizza delivery. In other domains, domain reasoning is responsible for interacting
with the operating system of a robot (querying sensors and commanding actuators).
Domain reasoning is o�en not a completely separate component from the dialogue
manager but is at least partially integrated into the DM which limits the latter to the
particular domain. While domain independence would be nice in principle, it is
much easier to devise domain-dependent DMs.

Natural Language Generation Natural Language Generation (NLG) turns dia-
logue acts into word sequences. A broad range of techniques, from simple, pattern-
based techniques that are very limited in domain to grammar-based broad approaches
(e. g. SPUD, Stone et al. 2003) can be used.

Speech Synthesis Speech synthesis usually turns written text into spoken audio
(which is why speech synthesis is o�en called text-to-speech, TTS). In fact speech syn-
thesis may also use more general general linguistic representations, possibly blurring
the line with NLG.
Due to the limited quality of synthesized speech, many current-day applied SDSs

rely on canned speech, audio snippets that are speci�cally recorded from a speaker to
closely match the intentions assigned to a particular DA. While perfect in this regard,
pre-recorded messages leave no room to �exibly reacting to the speci�c situation
which is necessary for more user-centered interactions. Speech synthesis is dealt with
in great detail in Chapter 7.

Many of the components used in SDSs are not speci�cally developed for spoken
dialogue but for other usage scenarios. For example, speech recognition is vastly
used in dictation, and speech synthesis is used in reading out texts – thus, most
o�-the-shelf speech recognition and synthesis so�ware is tailored towards written
language even when used in a spoken dialogue system. Likewise, many NLU and
NLG tasks are related to (text-based) web applications, such as generating weather
reports or understanding/categorizing the content of forum messages or tweets.
�is may be one of the reasons why incremental processing in input and output
components has not been a part of dialogue systems development from the start,
even though it is natural, obvious, and enables more human-like behaviour. Also,
especially the lower-level components (ASR and TTS) internally work in a le�-to-right
(i. e. easily incrementalizable) fashion anyways and have not been used incrementally

35

2 Spoken Dialogue and Spoken Dialogue Systems

domain

 Speech Recognition

Language Generation

history Dialog Manager

Language Understanding

Speech Synthesis

w
or
ds

D
A

speech

SQ
LDA

w
ords

D
A

speech

Figure 2.3: Schematic view of the architecture of and information �ow in (most)
spoken dialogue systems.

only because this feature was of no concern in the applications the o�-the-shelf
components were mainly developed for.

2.2.2 Interconnection of Components

�is subsection is concerned with the interconnection of the components described
in the previous subsection to form a modular system. �ere are two possible views
on the interconnections in the architecture: one is to follow the information �ow in
the system, the other is to follow the control �ow in the system. Incidentally, these
two �ows partially overlap.
�e simplest form of information �ow is realized in a pipeline, following the chain

model of communication (cmp. Subsection 2.1.2) as depicted in Figure 2.3. In a
pipeline (also: cascade, Guhe 2007, p. 67), the modules of the system are ordered
sequentially and the output of one component is passed on as input to the next.
Pipelines are the predominant architecture for at least the lower-level parts of most
spoken dialogue systems.(McTear 2002, p. 105; Jokinen and McTear 2010, Chap. 1.2)
�e main advantage of a pipeline is its simplicity: in a plain pipeline, a module

receives all its input from the preceding module and the generated output is passed ex-
clusively to the next module. �us, only twomodules need to agree on the interchange
format for the data that �ows between them and formats can be di�erentiated for
di�erent types of data. Management of concurrency is straightforward in a pipeline,
as coordination between neighbouring modules can be achieved by waiting for the
next module to be ready to accept data (or waiting for the previous module to provide
data). However, concurrent processing requires that input become available continu-

36

2.2 Components and Architecture for Spoken Dialogue Systems

domain

 Speech Recognition

history

Dialog Manager

Language Understanding

Speech Synthesis

Language Generation

Blackboard

speech speech
w
or
ds

w
ords

m
u
lt
ip
le

m
ul
tip
lem

ultiple

multiple multiple

Figure 2.4: Schematic view of the architecture of a blackboard-based spoken dialogue
systems; arrows labelled ‘multiple’ use multiple input and/or output data
formats.

ously and in small chunks, in order to spread processing load over a larger period of
time. If input is delivered infrequently and in larger units, consumers will o�en be
blocked waiting for input and be overwhelmed when input is provided all at once.
Pipelines can be operated pull-based, or push-based, that is, either a module waits

until it is queried for output, or a module is triggered into action by some input being
provided. Either way, enabling bi-directional communication between modules,
especially in the concurrent processing case, neutralizes much of the conceptual
simplicity of the pipeline approach.
While conceptually and structurally simple, some of the interaction that is necessary

for natural dialogue capabilities is di�cult to achieve in simple pipelines such as
the integration of high-level knowledge on lower levels, or passing on low-level
information to the highest levels (i. e. surviving intermediate levels). As an example,
conceptual pacts (Brennan and Clark 1996) or mimicking the user are impossible to
realize without passing on lower-level information because the precise words spoken
by the user (and interpreted by NLU) remain unknown to the NLG component. To
conclude, pipelines are simple, but maybe too simple.
Another architectural model allows the interchange via a common blackboard as

depicted in Figure 2.4. In this model, components write data in their own formats
into a common data store (the blackboard), and other components read these data to
derive their own output.

37

2 Spoken Dialogue and Spoken Dialogue Systems

In such a connectionist model, every module has access to all other modules’ data
(and, depending on the implementation, might even be able to change other modules’
data). �us, decisions can be based on the full information that is available in the
system, regardless of which module has generated it (potentially resulting in better
decisions). However, data formats need to be standardized for an e�ective use of this
advantage. Furthermore, access to ‘distant’ data is only possible if the provider of
that data is part of the system, limiting the modularity and re-usability of parts of the
system in di�erent contexts.
While in principle all modules can work independently and concurrently, a major

disadvantage of blackboard architectures is that of synchronization of data access
in light of concurrent processes. Multiple independent accesses to the blackboard
can lead to inconsistent reads if some of the accessed data is written to in-between.
Inconsistent reads can be avoided if the blackboard supports transactions and blocks
manipulation of data while a transaction is in progress. �is, however, incurs consid-
erable complexity on the implementation which then needs to implement full-blown
database capabilities.
Finally, modules might circularly react on each other (e. g. module A provides

some data X that module B reacts on by providing some data Y to which module A
reacts with retracting data X, and so on). Systematically detecting and handling such
loops, either at runtime or beforehand, may be problematic.
In short, where pipelines may take too seriously the chainmodel of communication,

blackboards completely disregard the layered structure of spoken dialogue. Black-
boards do not come with the limitations inherent in a pipeline but this power comes
with an increase in complexity and issues of stability that implementing modules
must be aware of.
�e other view on the architecture is that of control �ow, the paths that decision

making takes in the architecture. Figure 2.5 gives a schematic view of the exemplary
control �ow in an SDS in which control is indicated by dark (red) arrows. As can be
seen, all control is exerted by a dialogue controller that doubles as dialogue manager
in that system. Other models are possible as well: a system can be purely reactive, with
a pipeline of modules that is triggered into action by their respective input (starting
from incoming user speech). Alternatively, control can be shared between multiple
modules in the system (e. g. time-shared with di�erent modules being responsible in
di�erent moments, or sub-divided responsibilities for di�erent aspects of control like
turn-taking and contribution-determination).
Where pipelines have a natural control �ow, plain blackboards do not de�ne any

control �ow and must resort to update-noti�cation mechanisms or frequent polling.
Commands may be needed during a dialogue, to in�uence processing modules

(e. g. ASR grammars may need to be changed per dialogue state). However, such

38

2.2 Components and Architecture for Spoken Dialogue Systems

Call Control

Speech

Recognition

Speech

Synthesis

 NLU NLG

Dialogue

Controller

& Manager

Figure 2.5: Schematic view of control and information �ow in a spoken dialogue
system; dark (red) arrows indicate control, light (blue) arrows indicate
information �ow.

control messages may interfere with ongoing processing in the pipeline and technical
limitations may exist when control messages can be executed.

2.2.3 Discussion

Our architecture aims to combine the advantage of pipeline architectures (struc-
tured information, decoupled components, de�ned control �ow) with the �exibility
of blackboard architectures (concurrent processing, access to and manipulation of
all system data). �e architecture fully embraces incremental processing and sup-
ports e�cient increment updates, enabling concurrency with minimal locking in the
pipeline. Furthermore, a uniform data container for all data and an interlinking of
units to form a network that represents the system’s state enables modules to also
access data across multiple steps in the architecture, partially unifying the pipeline
and blackboard approaches.
�e issues of control �ow are potentially more important in full, deployed SDSs that

need to robustly handle thousands of calls without human intervention even when
sub-components are sometimes faulty. In contrast, the systems developed in this

39

2 Spoken Dialogue and Spoken Dialogue Systems

thesis were never meant to be “mission-critical” and are o�en only partial, enough
to demonstrate and assess the value of a certain component. �us, control is o�en
reactive, driven by user input once the system has been started. However, one system
will demonstrate partially distributed control for turn-taking and content issues,
respectively (see Chapter 6.1).
�e architectural decisions taken will be further justi�ed in Chapter 4 where the

toolkit for incremental processing InproTK is described. However, we �rst describe
some speci�c systems and their capabilities in the next section to analyze what exactly
are some of the missing capacities of current-day spoken dialogue systems.

2.3 State of the Art in Spoken Dialogue Systems

�is section very brie�y reviews the state of the art in spoken dialogue systems by �rst
presenting the industry standard for applied SDSs, then looks at some related research
systems, and �nally follow up on some recent advances in commercial systems.

2.3.1 Commercial, Standards-based Systems

An industry consortium led by theWorld Wide Web Consortium has developed since
1999 (Lucas 2000) a suite of (XML-based) standards for simple, state-based dialogue
systems (o�en called voice user interfaces, VUIs in the industry):
VoiceXML is the core standard (and eponymously used for the whole family). It de-

�nes dialogue management based on a simple slot-�lling approach. VoiceXML
documents are linked together and user replies determine what link is followed,
which is also why processors for VoiceXML are o�en called voice browsers.

SRGS, the speech recognition grammar speci�cation is a standard way of specifying the
expected user utterances (and which ASR is limited to understand). Grammars
may change between dialogue states (that is, the voice browser controls ASR
per-dialogue state) andmay contain embedded ECMAScript to shape the speech
recognizer output into a logical form.

SISR, semantic interpretation for speech recognition speci�es the format of the logical
form that ASR returns to the voice browser.

SSML, speech synthesis markup language is used to in�uence prosodic and other
factors of the system’s speech output. Finally,

CCXML, call-control XML is a standard to manage the setup and tear-down of a
dialogue with telephony or other voice-streaming hardware.

�e family of protocols around VoiceXML has spurred development and applica-
tion of voice user interfaces since 2000 (Lewis 2011, Chap. 5.1), as it has established
a framework for modular, interoperable components (developed by di�erent, spe-
cialized companies). In this respect, the loose coupling of components via standard

40

2.3 State of the Art in Spoken Dialogue Systems

network protocols based on XML has helped tremendously. Furthermore, commer-
cial toolkits for developing VoiceXML-driven GUIs exist, o�en providing graphical
interfaces and other productivity enhancements.
While dialogue management as de�ned by VoiceXML itself is relatively limited (or

rather, becomes cumbersome for complex dialogue strategies), a big advantage of the
standard is the fact that individual VoiceXML snippets can be generated dynamically
on a web-server, which may itself transparently implement more powerful dialogue
models and use VoiceXML only as its interface language towards the voice browser.
However, VoiceXML is too narrowly de�ned for exploring larger dialogue issues of

research interest. Speci�cally, VoiceXML uses an inherently turn-based processing
scheme, making meaningful incremental and sub-turn-based processing impossible.

2.3.2 Related Research Systems

The Let’s Go! Systems �e CMU Communicator Toolkit (Rudnicky et al. 1999)
and its successor Olympus/RavenClaw (Bohus and Rudnicky 2009) are architectures
that allow for a modular design of SDSs, with modules connected in a strict pipeline
(but using a central control hub) via the Galaxy message passing system (Sene� et al.
1998).
Let’s Go! is the name of a public bus information system run by CMU and imple-

mented in the RavenClaw architecture (Raux et al. 2003). �e toolkit and system have
been shown to work in a highly reactive system with fast turn-taking capacities (Raux
and Eskenazi 2009), which forms a fast-path signal from the audio input to the DM
that a response should be output. In that system, there is no deep understanding
during the utterances so that pro-active/predictive interventions are impossible. Fur-
thermore, processing on the fast-path and in the processing component could result
in di�erent intermediary and utterance-�nal behaviours (such a system might nod
repeatedly during the utterance to signal understanding and �nally reply “I did not

understand”).
Data for the bus domain has also been made public and a challenge for bus in-

formation systems has been organized (Black and Eskenazi 2009; Black et al. 2011).
In this context, the domain is also used for incremental SDS research, foremost by
Selfridge in his ongoing dissertation work: Selfridge et al. (2011) investigate iSR and
�nd similar results to those presented in Chapter 5. Selfridge et al. (2012b) presents a
(partially) incremental SDS for the Let’s Go! domain and features a combination of
iSR and POMDP-based dialogue management (Selfridge et al. 2012c).

USC-ICT Systems �e virtual humans group at the Institute for Creative Technologies
develops multi-modal virtual embodied conversational agents that include some
incremental technology. Incremental understanding of partial utterances has been

41

2 Spoken Dialogue and Spoken Dialogue Systems

shown by Sagae et al. (2009) and DeVault, Sagae, and Traum (2009) aimed to �nd the
point of maximum understanding during the utterance, which together allow to �nish
an utterance from that point on (DeVault and Traum 2012b) and has been extended
to take system con�dence into account (DeVault and Traum 2012a). A model for
incremental grounding during the utterance is also being developed in this context
(Visser et al. 2012).

SEMAINE �e SEMAINE project aims to build receptive, sensitive, virtual arti�cial
listening agents that aim to engage the user in a conversation (for as long as possible)
(Maat 2011).�e agent focuses on swi� turn-taking and emotion recognition (based
on prosodic analysis), while it in fact does not truly understand what it is being told.
Joustra (2011) �nds all agent reactions to be sluggish when compared to human-

human interactions. �is once more indicates that prosody alone is insu�cient
for turn-taking estimation and highlights the need for turn-taking based on a fully
incremental systems.

The YMIR Architecture Work on the YMIR architecture started with an interactive
multi-modal humanoid agent that performed gestures (�órisson 1997) and was
later extended to learn and perform full turn-taking (Jonsdottir, �órisson, and
Nivel 2008). �e architecture is very �ne-granular and tries to model the complexity
of real-time dialogue (�órisson and Jonsdottir 2008). However, processing in the
architecture is shallow and does not include understanding. As a consequence, it
cannot be used to build full dialogue systems.

The NUMBERS System �e Numbers system (Skantze and Schlangen 2009) is a
direct predecessor of the work presented here and also based on the IUmodel (Schlan-
gen and Skantze 2009). It incorporates some early �ndings on iSR (to be presented in
Chapter 5) and is otherwise based on the Higgins architecture (Skantze 2007) and
was later extended into JINDIGO (Skantze 2010), an alternative toolkit for building
iSDSs.

2.3.3 Advanced Commercial Systems

Commercial systems have been greatly advanced since Apple introduced Siri to
their smartphones in late 2011,8 where it can be used as an additional modality for
interaction with the system. Siri’s technological breakthrough is primarily in the
area of semantic understanding and system integration, not so much in interaction
schemes that would advance over other commercial systems.

8http://www.sri.com/work/timeline/siri

42

http://web.archive.org/web/20130103065116/http://www.sri.com/work/timeline/siri

2.4 Summary and Discussion

Google had previously developed an incremental web search method9 and corre-
spondingly, Google Voice Search10 also features incremental speech technology.
According to McGraw (2012), Google’s incremental speech recognition now uses

incremental hypothesis smoothing as detailed in (McGraw and Gruenstein 2012),
which itself is based on the methods to be described in Chapter 5, however in combi-
nation with a much more advanced speech recognizer and using machine-learned
stability estimates.
Side-by-side comparisons clearly indicate the advantage of incremental processing,

for example when answers to spoken queries are given with less latency and visual
feedback on the recognition result is returned incrementally.11
�e fact that incremental dialogue processing has successfully entered the market

does not only prove that this thesis should have been written much more rapidly, but
also shows that the topic at hand is economically viable.

2.4 Summary and Discussion

�is chapter argued that dialogue as a communication system is complex, as it en-
compasses many di�erent types of information on di�erent layers, and that both the
production and integration of feedback occurs with little latency. Dialogue uses turn-
taking as organizational principle. However, time-divisioning is not strict but rather
a gradual process in which the speaker/hearer relation is determined collaboratively,
and the �oor is shared among several dialogue participants with proportions that
change over time. Dialogue aims to exchange information (in the form of messages)
that need to be grounded, that is, being given feedback on the success of delivery of
the message. �e division between main and backward channels are not clear cut
and grounding feedback can be transported on both. Feedback is given concurrently
to ongoing ‘main’ messages, resulting in tight feedback loops. To model these tight
feedback loops, �exible incremental processing is needed.
Dialogue requires a multitude of di�erent types of processing, thus a practical

system will need to be composed of multiple components that work together. Re-
garding the modularization of dialogue processing, layered protocol theory describes
communicators that independently provide re�exive behaviour (this will be explored
with hesitating speech synthesis in Chapter 7.4). In LPT, modules also use informed
decision strategies to determine whether to pass on a (partial) hypothesis yet or to wait
for more input (iSR optimization performs this task and is dealt with in Chapter 5.5).
Still, LPT speci�cally dis-allows interaction across processing layers.

9http://www.google.com/instant/
10http://www.google.com/mobile/voice-search/
11http://vimeo.com/52497584

43

http://web.archive.org/web/20130228000335/http://www.google.com/instant/
http://web.archive.org/web/20121221121152/http://www.google.com/mobile/voice-search/
http://web.archive.org/web/20130201050410/http://vimeo.com/52497584

2 Spoken Dialogue and Spoken Dialogue Systems

A di�erent approach is taken by�órisson (2008) who argues that dialogue is a
heterogeneous, large and densely coupled system (HeLD) that is best described as a large
number of very small modules that interact tightly with many of the other modules
in the system. �is view is successfully implemented in the YMIR architecture for
turn-taking (�órisson and Jonsdottir 2008). However, while it has been successfully
extended to multi-modal and multi-party turn-taking (�órisson et al. 2010), its
modules are far more �ne-granular (and at the same time less sophisticated) than
those used by practical systems for spoken dialogue (and the degree of sophistication
of the modules is lacking). In fact, YMIR focuses solely on turn-taking and is missing
components for speech recognition or synthesis, or higher-level processing, thus
not showing that these are possible in the HeLD architecture. It is certainly more
than a thesis worth of work to build all of these components (and decide on their
interconnections) before full SDSs following that approach could become a reality.
�e proposed solution to the question of modularity vs. dense coupling is princi-

pled, standardized data exchange using IUs (Schlangen and Skantze 2009, 2011) within
a largely pipeline-based architecture. �e proposed system architecture is detailed in
Chapter 3 and its implementation in a so�ware toolkit in Chapter 4. �e architecture
broadens the information exchange betweenmodules in a strati�ed system by keeping
links to data on previous levels that can be queried by later processors and allows
acyclic graphs of modules instead of plain pipelines, as well as two-way exchange
between layers (in a somewhat limited way).
Of course, the architecture is incremental, thus, despite its simplicity in some

respects, it is a step forwards towards more naturally interacting systems as it provides
for close feedback loops which will be the topic of Chapter 6.

44

3 Incremental Processing and its Evaluation

�is chapter, based on (Baumann, Atterer, and Schlangen 2009; Baumann, Buß, and
Schlangen 2011) gives a short review on previous endeavours in incrementality to
motivate the notion of incremental processing that is used throughout the thesis.
Measuring the quality of incremental processing requires new kinds of metrics, and
we lay out this need and develop such metrics in Section 3.3. �e metrics will then be
used in the following chapters to measure the performance of incremental speech
recognition, timing estimation, and incremental speech synthesis.
�is chapter approaches evaluation as a purely quantitative analysis and develops

appropriate metrics for individual system components. A di�erent approach, sub-
jective evaluation, is also frequently used in dialogue research: test subjects interact
with, or inspect the output of full systems and system quality is measured in terms
of interaction quality or questionnaire ratings. We will perform and discuss such
evaluations on a small scale for the example applications in later chapters (6.1.2, 5.6,
6.2.6, 7.5) to supplement quantitative analyses.

3.1 Timeliness and Incrementality

�is thesis’ topic is incrementality and incremental processing. However, incremen-
tality is not an end in itself. Who should care if a dialog systemsworks incrementally or
not? In this section I will try to motivate why incrementality is important for building
naturally interacting spoken dialogue systems and one key to this is timeliness.
Dialogue is a collaborative process (or “joint action”, Clark 1996) and collaborating

means to work together. Hence, a collaborative process is one where the processors
(in this context, interlocutors of the dialogue) work together during the process of
creating a dialogue. Conventional dialogue systems collaborate on a turn-by-turn
basis: a user turn is received, valuated, and only then responded to with a system
turn. However, we have seen in the last chapter that this is not how humans interact:
speakers expect feedback to their ongoing contribution, and will give their own
feedback (and expect it to be received) during a system turn. Finally turn-changes
should be swi�, which may require the system to have a reply ready by the time
the user turn is over. In short, system reactions are not su�ciently timely. In fact,
Ward et al. (2005) found sluggish turn-taking to be one of the main obstacles in

45

3 Incremental Processing and its Evaluation

predictive < anticipatory < proactive < re°exive < reactive

Figure 3.1: Progression of ever stronger knowledge when taking decisions

SDS usability. �e above-mentioned behaviours require timely system reactions.1
Timing can be improved using incremental processing: where in standard systems,
processing load is squeezed into the short moment between the end of the user’s turn
and the beginning of the system’s turn, incremental systems can fold processing time
by e�ectuating some processing during speech delivery, where system load is low
and processing time is abundant. Chapter 5 focuses on the user’s speech delivery
(and aims at folding analyses into this delivery time); Chapter 7 is concerned with
output generation, where processing can be folded into the system’s speech delivery.
To conclude, timeliness is the goal and incremental processing is a means of reaching
this goal.
Timely behaviour will o�enmean that a system has to go beyond reacting as quickly

as possible: replies, feedback, or turn-changes o�en have to be initiated before they
should commence (e. g. to overcome processing lags), so the system needs to be able
to predict upcoming events and prepare reactions beforehand. �e processor is called
proactive if it is able to take a decision even before all evidence that a decision is
to be based on has become available. A clear line between reactive and proactive
behaviour cannot be drawn: the main di�erence in classifying an action is on how
much evidence a decision is being based on and on how likely this evidence is to
change in the future. As a matter of fact, language knows a lot of words to distinguish
how decisions come about: a reaction can be expected when all evidence needed
has been compiled. A re�ex happens sooner, without complex decision making. We
can predict or anticipate a correct action even without context, or with only little
context available. See Figure 3.1 for an illustration. �us, proactiveness can be seen as
a continuum with a post-hoc reaction at one of the extremes, and purely speculative
behaviour at the other. As evidence can be established over time, a more proactive
system will usually be able to act more quickly, while at the same time being less
informed about whether this action will in fact turn out to be the correct one.
A proactive system will occasionally perform false actions and it thus must be able

to ‘change its mind’, in order to correct its behaviour as quickly as possible. Overall,
a proactive system should optimize the trade-o� between spending time to gather
evidence and spending time to repair false actions.

1We prefer the term “timely system behaviour” over the computational term “real-time processing”
as the latter implies stronger timing requirements (on the order of micro- not milliseconds).

46

3.1 Timeliness and Incrementality

3.1.1 Aspects of Incrementality

Incremental processing, in its intuitive form, means to process bit-by-bit, in a piece-
meal fashion. Incremental processing has a long tradition in spoken language pro-
cessing (e. g. Reddy et al. 1976; Young, Russell, and�ornton 1989). However, incre-
mentality was primarily used as a means of reducing memory requirements, and as a
way to integrate knowledge components to e�ciently prune the search space during
recognition.
In linguistics, Levelt (1989) coined the term Wundt’s principle (a�er Wilhelm

Wundt) to describe bit-by-bit, incremental processing: “Each processing component
will be triggered into activity by a minimal amount of its characteristic input.” (Levelt
1989, p. 26)
One drawback of Levelt’s de�nition is that input processing (‘being triggered into

action’) is not observable to the outside world. However, processing should only be
called incremental if output can also be observed incrementally. Two alternative views
have been given for incremental output in the literature:
Levelt’s de�nition ofWundt’s principle was extended byGuhe (2007) to append “and

produces characteristic output as soon as a minimal amount of output is available.”
(Guhe 2007, p. 70) Kilger and Finkler (1995) instead stress not the possibility of
generating output but the necessity of that output for further operation. Both these
de�nitions are lacking. In a modular system, a processing module is unable to �nd out
whether its output is necessary for further operation, rendering Kilger and Finkler’s
notion problematic. At the same time, Guhe’s extension never forces the processor to
generate output during processing (i. e. there is no constraint on the ‘availability’ of
incremental output). We thus propose that a processor should be called incremental
if it consumes input in a piece-meal fashion (Levelt 1989), and generates characteristic
output in a piece-meal fashion (Guhe 2007) at least in some situations – without
this condition, any incrementality a processor might possess internally would be
unobservable to the outside world. �e aspect of whether output is generated at
all times or only sometimes has been calledmassive vs.moderate incrementality by
Hildebrandt et al. (1999).
�e granularity, i. e. what counts as ‘minimal amounts’ of input is crucial for incre-

mental processing: the more �ne-granular a processor, the earlier it can be triggered
into action. Of course, granularity varies between processors depending on the task
at hand.
Most of the work cited above does not systematically deal with the fact that in-

cremental processing requires that a component be able to “change its mind”, i. e.
it requires the possibility for an incremental processor to revert previously output
hypotheses in the light of additional input. Guhe (2007) calls the property of simply

47

3 Incremental Processing and its Evaluation

extending previously output resultsmonotonicity. Correspondingly, a processor that
is able to change previous hypotheses may be called non-monotonous.
A model suitable for non-monotonous incremental processing is described by

Schlangen and Skantze (2009). �e model supports changes and revocation of previ-
ously output parts of hypotheses of an individual processor. �is allows a processor
to output an hypothesis as soon as possible, while keeping the option of changing
or revoking this hypothesis in favour of a di�erent, better one, later on. Signi�cant
changes and extensions in evaluation methodology become necessary for incremental
processing following this approach which is described in some depth in Section 3.2.

3.1.2 Related Work on Evaluating Incremental Processing

In early systems, incrementality was used to improve non-incremental system per-
formance but not used as a feature in its own right and no evaluation of incremental
aspects took place. “Consciously incremental” processors for many di�erent tasks
have also been described in the literature (e. g. Sagae et al. 2009; Wachsmuth, Fink,
and Sagerer 1998), and these descriptions usually also include evaluations. An o�en-
used method here is to use standard metrics, such as word error rate (WER; Hunt
1990) for speech recognizers, for comparing a non-incremental and an incremental
processor which never change their own previously output hypotheses. Such non-
monotonous incremental processing is limited and hence results will be worse than
non-incremental processing. �us, the trade-o� between the degree of incrementality
and degraded results can be assessed (e. g. Wachsmuth, Fink, and Sagerer 1998).
To our knowledge, incremental evaluation metrics of ASR for incremental systems

have not been covered in the literature before. Most closely related, Wachsmuth, Fink,
and Sagerer (1998) show results for an ASR which �xes its results a�er a given time ∆
and report the corresponding word error rate (WER). �is unfortunately confounds
the incremental and non-incremental properties of their ASR’s performance.
A notable exception from the tradition of using standard metrics for the evalua-

tion of incremental processors is (Kato, Matsubara, and Inagaki 2004) in the �eld
of incremental parsing, which deals with the evaluation of incrementally generated
partial parse trees. Kato et al. de�ne a partial parse’s validity given partial input and
implement a method for withholding output hypotheses for a given length of time
(similarly to our methods to be presented in Section 5.5), measuring the imposed
average delay of this method as well as loss in precision compared to non-incremental
processing. While this evaluation method goes some way towards capturing pecu-
liarities of incremental processing, it still cannot account for the full �exibility of the
incremental model by Schlangen and Skantze (2009), which allows for incremen-
tal processors to revise previously output hypotheses so that they may eventually
produce �nal results that are as good as those generated by their non-incremental

48

3.1 Timeliness and Incrementality

counterparts. Such an incremental processor may trade timeliness of incremental
results for quality of �nal results. As we will argue here, for this kind of incremental
processing evaluation metrics are needed that capture speci�cally the incremental
aspects of the processors and the evolution over time of incremental results. What
needs to be measured is what happens when, instead of simply comparing �nal results
of incremental and non-incremental settings.
In own previous work on incremental processors, the author has helped to develop

metrics – out of a need to do justice to the complexity of the problem of incremental
processing, which is not captured by standard metrics. For evaluating incremental
ASR and, more generally, for balancing incremental quality and responsiveness (Bau-
mann, Atterer, and Schlangen 2009); for evaluating incremental reference resolution
(Schlangen, Baumann, and Atterer 2009), where the focus was on measuring the
“stability” of hypotheses; for evaluating incremental natural language understanding
more generally (Atterer, Baumann, and Schlangen 2009), looking at the distribution of
certain important events (correct hypothesis �rst found, and �nal decision reached);
and �nally for n-best processing (Baumann et al. 2009). A �rst consolidation and
generalization of these metrics has been presented in (Baumann, Buß, and Schlangen
2011) which forms the basis for the present chapter.

3.1.3 Relation to Anytime Processing

�ere are similarities between the problems posed by incremental processing and
those posed by what is o�en called “anytime processing” (Dean and Boddy 1988).
Particularly relevant for the discussion here is (Zilberstein 1996), who discusses the
evaluation of anytime processing. Anytime processing is concerned with algorithms
that have some result ready at every instant, even when all processing possibilities
have not yet been exhausted. As noted by (Schlangen and Skantze 2009), incremental
processing can be seen as a generalization of anytime processing, where responses are
required also for partial input. In anytime processing, there exists a trade-o� between
the processor’s deliberation time (when to stop a heuristic search) and the quality of
results. In incremental processing, the deliberation time can be seen as the amount
of input that the processor awaits before returning a partial result.
Zilberstein (1996) notes for anytime processing that “[t]he binary notion of cor-

rectness is replaced with a multi-valued quality measure associated with each answer.”
(Zilberstein 1996, p. 73), and we will argue below that incremental evaluation can-
not be condensed to one single metric but that there are di�erent dimensions of
incremental performance. Zilberstein also introduces quality maps and performance
pro�les as ways to characterize the “expected output quality with execution time t” for
anytime processors, a notion which we will adjust to relate output quality to amount
of context.

49

3 Incremental Processing and its Evaluation

out2

out3

out5

out6

out8

in2 in3 in4 in5 in6 in7 in8in1

tout

1 2 3 4 5 6 7 8

4

2

3

6

5

7

8

1
tin

Figure 3.2: Schematic view of relation between input increments and growing output
of an incremental processor.

3.2 Our Notion of Incremental Processing

As found in the previous section, incremental processing is the processing of minimal
amounts of input (increments) (Guhe 2007, p. 70), and the (at least occasional)
generation of characteristic output in a piece-meal fashion.
Processors meeting these two requirements are called incremental processors. �e

input to an incremental processor should be structured to support this processing
mode. In order to also supportmodular processing, the output must be structured
similarly because that output must be usable as the input to a next incremental
processor. Input and output structure will be further discussed in Subsection 3.2.2.
�e input and output of an incremental processor and data structures suitable for

this purpose are discussed in the following subsections.

3.2.1 Incremental Processors

�e input and output behaviour of an incremental processor, which is also schemati-
cally represented in Figure 3.2, is de�ned as follows:

De�nition 3.1. An incremental processor accepts input in a piece-meal fashion and
produces (partial) output before having consumed all input at least in some situations.

In Figure 3.2, the input, consisting of a sequence of eight input increments, is shown
in the top row and the output a�er the processing of each input increment is shown

50

3.2 Our Notion of Incremental Processing

in the subsequent rows. �e time spanned by the input increments is shown on the
horizontal axis, while the times at which the outputs have been produced are indicated
on the vertical axis. �e �gure assumes the output at some instant t to be based on all
input up to t and represents this correspondence through the width (and alignment)
of the bars representing output. As an example, output out5 is the output generated
at time t5, a�er all input increments up to and including in5 have been consumed. It
is incidental in the �gure that input increment times are equidistant, and in many
cases, there will be irregular intervals between increments. However, time is discrete
in our model:

De�nition 3.2. A frame forms the basic temporal unit and determines the maximum
granularity of input, processing, and its results with regards to timing. All times are
discretized to a multiple of the frame duration.

Frames discretize time forcing the change of incremental output to be discrete as
well. �us, gradual output change is not allowed (at least below the level of tem-
poral granularity). Frames also simplify time handling and the interconnection of
separate, concurrently running processors. In our implementation (see Chapter 4)
time progresses at a granularity of 10ms (for speech recognition) or 5ms (for speech
synthesis). Additionally, we require for evaluation that measured time is �nite, i. e.
that there is a tmax a�er which no more processing occurs and beyond which no
hypotheses extend.
In the evaluation methodology presented here, delays imposed by the actual con-

sumption of input, processing proper, and generation of output by the processor
are ignored. (In reality, tout5 , the time at which output out5 has been created would
be slightly a�er tin5 , the time at which input in5 was consumed.) In the terminology
of Ramalingam and Reps (1993), as cited by Guhe (2007, p. 75), processing time is
assumed to be bounded, i. e. constant per input increment, and negligible compared
to the time spanned by each increment. (However, no steps are taken to enforce
boundedness, especially, incremental processors are not restricted to limited contexts
as proposed by Guhe (2007).)
Boundedness can also be phrased as sustainability: if processing time regularly

exceeds the frame duration at which new input is fed into the processor, then real-time
processing becomes infeasible. Processing lags accumulate in unsustainable incre-
mental processing, reducing to absurdity our goal of using incremental processing
to allow timely system behaviour. Luckily, with modern day computers, many tasks,
such as speech recognition and speech vocoding, allow for sustainable incremental
processing; many other tasks, such asNLG and parsing, are within reach of sustainable
real-time incrementality.
Notice that not always is new output being generated a�er consuming an input

increment (there is no new output a�er consuming in1, in4, and in7) (moderate in-

51

3 Incremental Processing and its Evaluation

crementality in the sense of Hildebrandt et al. 1999, p. 22). For anytime processing,
Zilberstein (1996, p. 74) calls the property of having a result ready at all times inter-
ruptibility and notes that any non-interruptible processor can bemade interruptible by
caching the most recent result. �is holds analogously for incremental processing. In
the following, we assume processors to always have incremental output ready, trans-
parently caching most recent results if processing itself is not massively incremental
(in the sense of Hildebrandt et al. 1999).

Figure 3.2 illustrated that there are two temporal dimensions that are relevant when
talking about incremental processing: one is the time when the output was made
(shown along the vertical axis), the other is which segment of the input that output
is based on (shown along the horizontal axis). As a general rule, when evaluating,
accuracy of the output should only be determined relative to the input that was
available, and timeliness of the output should be determined relative to the relevant
timing of the input. Finally, the way that the output evolves will have to be considered.
Monotonous incremental processing cannot change partial output that later turns

out to be wrong. Being unable to change previous output in the light of additional
input will produce inferior results if there are long-range dependencies. Such in�exi-
ble processing may be called stubborn, in a sense, with the opposite being yielding
processing:

De�nition 3.3. An incremental processor is called yielding if its �nal result (i. e. the
output produced a�er processing all input) is equivalent to the result of a similar non-
incremental processor for the same task (one that equals the incremental processor
in internal data modelling, etc.).

An incremental processor can meet this criterion by deferring the production of out-
put until the situation is unambiguous to guarantee monotonic output. However, this
con�icts with our central goal of timeliness. Such a processing strategy will o�en lead
to very few intermediate results, or no intermediate results at all, possibly rendering
the processor fully non-incremental. In fact, both monotonous output together with
yieldingness can only be simultaneously guaranteed if an input increment’s in�uence
is limited to a local context (e. g. a few words into the future may unambiguously
determine a word’s part-of-speech tag). Natural language o�en contains long-range
dependencies (relevant e. g. in parsing), so just as humans are sometimes ‘garden-
pathed’, a system should be able to output an hypothesis if it has a strong belief about
a situation but also be able to change the hypothesis if future input indicates this.
While the frequency of long-range dependencies is certainly lower for low levels of
processing, the distance spanned by dependencies does not seem to be restricted.
Monotonous hypotheses have advantages, foremost that a consuming processor

can perfectly rely on intermediate results. However, the interpretation of natural
language is non-monotonous, due to long-range dependencies, as outlined above,

52

3.2 Our Notion of Incremental Processing

making it desirable to allow non-monotonicity in an incremental processor’s output
and we will describe how this can be handled systematically in the next subsection.
For non-monotonous output, the need to measure the degree of non-monotonicity,
that is, the amount of changes to incremental hypotheses arises. Recently, the term
hypothesis stability has been used (Selfridge et al. 2011) to describe the degree of
non-monotonicity of a processor’s output. We will describe metrics that describe
diachronic output evaluation to measure stability in Subsection 3.3.2.3.
Early works on incrementality (e. g. Wachsmuth, Fink, and Sagerer 1998) used

‘stubborn’ processing schemes. �ese were o�en evaluated in terms of quality degra-
dation (e. g.WER increase) compared to their non-incremental counterparts. As our
yielding processors ultimately generate the same output as non-incremental proces-
sors, noWER increase can be measured. �us, our evaluation scheme brings us closer
to actually measuring the incremental properties rather than performance decrease
under a limited incremental processing scheme.
To conclude, in our notion of incrementality, a processor’s future hypotheses must

not be restricted by its intermediately hypothesized, partial results that it has output
before. Instead, it should be able to take back hypotheses that later turned out to be
wrong (rendering its output non-monotonous). �is requirement is re�ected in our
representation of incremental data which we turn to next.

3.2.2 Representing Incremental Data

Figure 3.2 deliberately le� out the question of how an incremental processor’s output
should be structured (the output was drawn simply as long unstructured bars). Finkler
(1997) introduced the distinction between quantitative and qualitative incrementality.
In the former, all output is repeated a�er every input increment and hence the question
of output structure is irrelevant for evaluation methodology. However, quantitative
incrementality does not facilitate building modular incremental systems where one
processor feeds the next, as output from one component cannot easily be fed to a
subsequent component in a piece-meal fashion. �e link between individual bits of
information is lost. Contrastingly, in qualitative incrementality, output increments
build on the output of the preceding processing step. �us, to support modular
incremental systems, we have the same requirements for a processor’s output that we
have for the input: it must be structured to support piece-meal feeding to a succeeding
processor, that is, it must come in pieces:

De�nition 3.4. We call iu = (payload; start; end) ∈ I = P × N × N, an evaluation
increment of input or output with a payload from some set of payloads P and under
the constraint that start ≤ end .

53

3 Incremental Processing and its Evaluation

�e payload of an increment may be a word, a phoneme, a concept, or whatever
other minimal amounts of data the processor generates and that is to be evaluated for
appropriateness. Start and end times are measured in frames.2
Additionally, to ease processing in a modularized, yet highly coupled and intercon-

nected system, we may be interested in tracing which parts of the input have led to a
certain output increment in order to make more informed decisions in later modules.
We use the notion of incremental units (IUs), introduced by Schlangen and Skantze
(2009) and extended in (Schlangen and Skantze 2011) to arrive at a parsimonious
representation for both input and output. IUs meet our de�nition of evaluation in-
crements. As de�ned by Schlangen and Skantze (2009), IUs are the smallest ‘chunks’
of information that can trigger a processor into action. IUs typically are part of larger
units, in a manner as individual words are parts of an utterance. �is relation of being
part of the same larger unit is recorded through same level links; the IUs that were used
in creating a given IU is linked to it via grounded in links.3 As IUs are connected with
these links, an IU network emerges that represents the current output of the processor
at the given instant. During incremental processing, the processor incrementally
builds up the network of IUs that will eventually form its �nal output, once all input
has been consumed.

IUs that describe the state of the world are grounded either directly in (some parts
of) the primary signal, or in other IUs and following their grounded in links will
eventually ground out to the primary signal. �us, �nally, all IUs can be attributed to
some portion of the signal, thus, have a start and an end time and meet our timing
requirement.4

IUs as increments are ‘minimal units’ (Schlangen and Skantze 2009) and an hy-
pothesis of a processor consists of several increments in a sequence:

De�nition 3.5. We call hyp = (iu1, iu2, . . . , iuk) ∈ H = I∗ a processor’s hypothesis
about the state of a�airs.5

2For simplicity (e. g. to allow easy comparison of di�erent methods), times can be measures relative
to the beginning of processing, not on an absolute scale.

3�e sequential relationship expressed by same level links is represented implicitly in the input
sequence in Figure 3.2 simply by placing the increments in sequence; Figures 3.3 (right side), 3.4 and
later �gures make them explicit with diamond-headed arrows between IUs. Informational dependency
between input and output is represented in Figures 3.2 and 3.3 (le� side) through horizontal alignment
of inputs and outputs while the input has been le� out in Figure 3.4 and no dependencies are shown.
In later �gures, grounded in links for informational dependency will be expressed by arrows with
regular heads.

4�is is tailored towards events that span a period of time. Events that are based on a point in time
could be handled by assigning identical start and end times.

5Sometimes hyp = (iu1 , iu2 , . . . , iuk) will be abbreviated as iu1. .k below.

54

3.2 Our Notion of Incremental Processing

whyp6

whyp3
whyp4
whyp5

whyp7
whyp8

sil

sil nimm

sil nimm

sil nimm

sil bittenimm

sil bittenimm es

das

sil bisnimm

sil bittenimm

sil nimm bitte

sil bitte dasnimm kreuz

whyp9
whyp10

whyp12

whyp11

...

©(nimm)

©(bitte)

ª(bitte), ©(bis)

ª(bis), ©(bitte)

©(es)

ª(es), ©(das)

©(kreuz)

2 4 6 8 10 120 3 5 7 9 111time:

bitte dasNimm

bitte esNimm

bitteNimm

bisNimm

bitteNimm

Nimm

bitte das KreuzNimm

Nimm

Nimm

Figure 3.3: ASR hypotheses during incremental recognition. Raw ASR hypotheses
are shown on the le�, the corresponding IU network on the right, and
step-wise edits in the center.

Incremental processors have a current hypothesis, composed of a sequence of IUs,
at every time t:

De�nition 3.6. We call hypt = (iu1, iu2, . . . , iuk), with t ∈ N the hypothesis of an in-
cremental processor a�er processing all input up to (and including) time t (measured
in frames); t ≤ tmax.

Many processors on the lower levels may provide for the additional constraint that
IUs are non-overlapping and temporally ordered: ∀i ∈ (1 . . . k − 1) ∶ end(iui) ≤
start(iui+1).6 Notice that we do not restrict the timings of the hypothesized IUs:
while most o�en, end(iuk) ≤ t, i. e. the processor generates output only for the input
that it has received so far, this need not necessarily be the case: a processor will
be called predictive if it generates some output increments describing future events
without having received any direct supporting evidence so far (i. e. given hypt = iu1..k ,
end(iuk) > t).
�e current hypothesis, i. e. the current ‘total output’ of an incremental processor

during incremental processing can be read o� the output IU network by following the
same level links from the newest IU backwards. Figure 3.3 shows (stylized) output
of an incremental speech recognition component. In the �gure, ASR is recognizing
the utterance “Nimm bitte das Kreuz [Take please the cross]” with intermittent

6�e function start (and similar functions used below) are meant to select the corresponding �eld
from their argument.

55

3 Incremental Processing and its Evaluation

bitte es KreuzNimm

bitte es KreuzNimm

bitte das KreuzNimm

bitte

das Kreuz

Nimm

es Kreuz

a) one-best

b) n-best

c) lattice

time 0 1 2 3 4

Figure 3.4: One-best (a), n-best (b), or lattice (c) IU output of an ASR in the IU

framework.

misrecognitions substituting “bis” (“until”) for “bitte” (“please”) and “es” (“it”) for
“das” (“the”). �e representation on the le� of the �gure is similar to that of Figure 3.2,
but here the actual content and structure of the output hypotheses is shown. �e
rightmost column shows the IU network as it emerges a�er each processing step. Each
IU contains a word hypothesis and IUs are connected via same level links, eventually
forming an utterance.
Figure 3.4 shows more IU networks for ASRs in di�erent con�gurations; for one-

best output, there is one �nal node, for n-best lists there are n �nal nodes with
unconnected networks and for lattice-/tree-like structures paths are connected in a
common root, ending possibly in several �nal nodes. In this case, not only one, but
several current hypotheses (or: variants of the current hypothesis) can be derived
from an IU network at the same time.7
In our scheme, non-incremental processors produce only one hypothesis hyp for

t = tmax, i. e. a�er processing the whole input. In contrast, an incremental processor
should outputmultiple (consecutive) hypotheses, �nally reaching hyptmax

. Using the
terminology for hypotheses, we can say that an incremental processor is yielding i�
its hyptmax

always equals its non-incremental counterpart’s hypothesis.
We will now de�ne an abstract notion of similarity in order to be able to describe

the possibilities for succession of consecutive hypotheses below.

De�nition 3.7. We call two increments similar (iu1 ≈ iu2) i� they have the same
payload: iu1 ≈ iu2 ⇔ payload(iu1) = payload(iu2).

7�e evaluation metrics de�ned in this chapter have to be extended to handle multiple current
hypotheses. �is will be further explored in Chapter 5.4.2. For the time being it su�ces to say that one
or more hypotheses can be derived for all IU networks at any time.

56

3.2 Our Notion of Incremental Processing

We do not deem it necessary to restrict the amount of variation in start and end
times for two increments to be similar. In practice we will use increment similarity
almost exclusively in conjunction with the position of the increment in the list of
hypothesized increments, which restricts timing variation to a sensible level.8
Similarity can easily be extended to hypotheses: as we are dealing with full hypothe-

ses, we extend the de�nition of similarity to increment sequences and additionally
de�ne the concept of pre�xes:

De�nition 3.8. Two hypotheses hyp = (iu1, iu2, . . . , iuk) and hyp
′ = (iu′1, iu

′
2, . . . , iu

′

l)
(or for short iu1..k and iu

′

1..l) are called similar (iu1..k ≈ iu′1..l) i� k = l and ∀i ∈ (1 . . . k) ∶
iui ≈ iu′i .

One feature of incremental language processing (in our experience) is that much
of the previous output remains valid between processing steps (that is, even when
allowing non-monotonicity, the degree of monotonicity is high). In incremental
speech recognition, for example, two consecutive hypotheses (hypt and hypt+1) are
o�en similar in that theymostly contain the samewords. (Very o�en forASR, all words
remain the same apart from the last one consuming one more frame: (∀i ∈ (1 . . . k) ∶
wordi(hypt+1) = wordi(hypt))∧end(wordk(hypt+1)) = end(wordk(hypt))+1.) When
adjacent hypotheses are di�erent, di�erences o�en regard the “right end”, i. e. the most
recent parts of the hypothesis: iuk and/or a few increments preceding iuk . For speech
recognition, this happens if an additional, new word is recognized, or a previously
hypothesized word is found to be wrong and retracted, or a word hypothesis is
replaced with a di�erent, better matching word hypothesis. As most of the change
occurs towards the ‘newest’ part of the hypotheses, it is sensible to have a notion of
the common pre�x of two hypotheses:

De�nition 3.9. Given an hypothesis hypt = (iu1, iu2, . . . , iuk), we call any increment
sequence iu1..i with i ∈ (1 . . . k) a pre�x of hypt : iu1..i ⪷ hypt .

Before making use of this notion of a pre�x, we will now describe three simple
edit operations that can be applied to the right end of an hypothesis hyp in order to
turn it into hyp′ and that can be used to describe the change between consecutive
hypotheses:

De�nition 3.10. We call ⊕ ∶ H× IÐ→ H the add edit operation. Given an hypothesis
hyp = iu1..k and an increment iu, apply(hyp,⊕(iu)), or for short hyp⊕ iu results in
the hypothesis hyp′ = (iu1..k , iu).

8�is valuation is from experience and purely qualitative; testing whether all similar IUs (using
above de�nition) meet this notion would be an enormous (and tedious) undertaking.

57

3 Incremental Processing and its Evaluation

De�nition 3.11. Likewise, we call ⊖ ∶ H× IÐ→ H the revoke (remove) edit operation.
Given an hypothesis hyp = iu1..k and an increment iu, apply(hyp,⊖(iu)), or for short
hyp⊖ iu results in the hypothesis hyp′ = iu1..k−1, given that iuk ≈ iu.

De�nition 3.12. We call E = ⊕ ∪⊖ the set of edit operations.

Edit operations can be applied one a�er the other to turn any hypothesis into any
other.9 To make this simple, we allow to apply lists of edits instead of just one; the
edits in the list are applied one a�er the other.
In this thesis we do not regularly refer to substitution as an edit operation (which

substitutes the last increment of an hypothesis for another). However, if needed,
substitution can be seen as the concatenation of a revoke and an add operation:

De�nition 3.13. We call⊘ ∶ H×I×IÐ→ H the substitute edit operation. ⊘(iu1, iu2) =
(⊖(iu1) ⊕ (iu2)).

Similarly to constructing new hypotheses from (lists of) edits, we would also like
to generate the lists of edits that are needed to do so. We make use of the notion of
hypothesis pre�xes de�ned above:

De�nition 3.14. We call di� (hyp1, hyp2) ∈ E
∗ the operation that generates the mini-

mal list of edits necessary to turn hyp1 into hyp2:
Given hyp1 = (iu1...k) and hyp2 = (iu

′

1...l), and let j = argmax j iu1.. j ≈ iu′1.. j denote the

last element of themaximum common pre�x of hyp1 and hyp2; then di� (hyp1, hyp2) =
(⊖(iuk) ⊖ (iuk−1) . . . ⊖ (iu j+1) ⊕ (iu′j+1) ⊕ (iu

′
j+2) . . . ⊕ (iu

′

l)).

Edit lists between consecutive hypotheses (di� (hypt−1, hypt)) are shown in the
middle column of Figure 3.3. Of course, the edit operations just described correspond
to IUs being added to or unlinked from the IU network.
Edit operations are deliberately limited to operate on the most recent parts of

an hypothesis, which simpli�es the model. While redundant edits are required to
exchange a unit that was constructed a while back, such exchanges become sparser and
sparser the further the distance. �us, for sequential data the edit operations presented
here are an ideal tradeo� between model complexity and e�ciency. (However, the
trade-o� may di�er e. g. for parsing, where proximity cannot be measured linearly in
numbers of words.)
To conclude, using the notation developed in this section, both the current full

hypotheses as well as the changes between consecutive hypotheses can be traced

9Of course, more complex edit operations could be introduced to support changing hypotheses
‘in the middle’. However, apart from the fact that the vast majority of edits occurs at the right edge of
hypotheses (see Chapter 5.5), and that in�x edit operations would add a lot of complexity, our edit
operations are already su�cient to support any transformation of hypotheses.

58

3.3 Evaluation of Incremental Processors

between processors. �e representations allow us to de�ne metrics that describe
(a) the quality of the results encoded in the IU network, (b) the times at which the
individual contributions that form this result were created by the processor, and
(c) the diachronic evolution of the network during processing. We will describe how
to evaluate these three aspects of incremental processing in the following section,
a�er discussing the types of gold standard information that are required.

3.3 Evaluation of Incremental Processors

�is section describes quantitative evaluation schemes for incremental processors
which are based on comparing a processor’s output against some given ideal output.
�ere are various sub-properties that are not independent of each other, and trade-o�s
are involved if either of those is to be optimized.
�e requirement for speci�c incremental metrics arises foremost from the �exi-

bility of the processing scheme, with most processors being yielding (i. e. ultimately
producing the same output as non-incremental processors). In contrast to using
conventional evaluation metrics for incremental processors, the metrics presented
here follow the goal of separating incremental performance aspects from overall,
non-incrementally observable performance.
We are solely concerned with the evaluation of individual incremental processors or

their combination into pipelines but we do not consider the combination of processors
to arbitrary systems. As a consequence, we do not have to consider the inter-play of
loops when processors feed back information to predecessors.10 In the sense of Wirén
(1992), the evaluation scheme is limited to processing that is ordered le�-to-right.

As explained in the previous section, an incremental processor produces a sequence
of partial outputs and there are several aspects to the sequence that will be covered by
di�erent metrics. Before de�ning metrics for these aspects, we �rst turn to the targets
for comparison: the gold standard.

3.3.1 Gold Standards for Evaluation

�e ideal output for comparison (o�en called gold standard) can be manually con-
structed or automatically generated using additional knowledge that is not available
to the processor being evaluated.
�e ideal output of a process looks di�erently, depending on the task, and the

speci�c goals set for a processor. �e dis�uent utterance shown in Figure 3.5 is an
example for this: even though “knife” is shown to be uttered by mistake with the

10However, this evaluation methodology could be used if loops are only internal to the collection of
processors that are to be evaluated.

59

3 Incremental Processing and its Evaluation

„Pick up the fork and the knife, I mean, the spoon.“textual gold:

semantic gold:

pragmatic gold:

take fork AND knife INTERREG spoon

take(X) X=fork take(Y) Y=spoon

Figure 3.5: �ree gold standard annotations of a dis�uent utterance: for speech recog-
nition, semantics and pragmatics.

interregnum “I mean” and later corrected by the reparans “spoon”, it should form part
of the output of an incremental speech recognizer as these words have undeniably
been spoken. Similarly, a simple semantic analyzer should probably generate output
for both “knife” and “I mean”, though the latter should be marked as being an in-
terregnum. However, a pragmatic interpreter should not output “take(knife)”, not
even intermittently, as this meaning is not what the speaker intends. Instead it should
only output “take(spoon)” and only this should be marked in the gold standard for
evaluating a pragmatic interpreter. Such an interpreter’s prudence will come at the
cost of timeliness, because output can only be generated when it is reasonably certain.
Such considerations should be taken into account when designing the gold standard
for a speci�c application.
We have said above that quantitative evaluation is the comparison of actual output

of a given processor to some sort of ideal output. �e previous section has shown
how output can be represented in a way that makes all dimensions of incremental
information (content, timing, and evolution of incremental results) accessible in the
evaluation of an incremental hypothesis. �e format and availability of ideal output
will be discussed now. Sometimes, obtaining the ideal output is easy; in other cases,
some required information cannot be recovered from typical evaluation resources,
and an approximation has to be found. �e former case will be discussed �rst, and
then the approximation case.

3.3.1.1 Evaluation with Incremental Gold Standards

Figure 3.3 from the previous section shows the output of an incremental processor
a�er each input increment consumed. �is is the format in which we would like a
gold standard for evaluation to be, in order to be able to evaluate every incremental
hypothesis. Luckily, the information required for this is o�en available in existing
ASR evaluation resources: for the content, we need the output increments, which in
this case is a sequence of words which is provided by the transliteration of the input.
We also need the link between input increments and output increments which in this

60

3.3 Evaluation of Incremental Processors

gold:

gold6

gold2
gold3
gold4

gold5

gold7

gold8

gold1 sil

sil

sil nimm

sil bitte dasnimm kreuz

sil nimm

sil bittenimm

sil bittenimm

sil bittenimm das

sil bittenimm

sil nimm bitte das

sil nimm bitte das kreuz

sil bitte dasnimm kreuz

sil nimm

gold9
gold10

gold12

gold11

...

...
2 4 6 8 10 120 3 5 7 9 111time:

Figure 3.6: �e gold standard for incremental speech recognition evaluation.

case means that we need an alignment between words and audio signal. Again, this is
o�en provided by ASR evaluation resources, and if not, can be produced automatically
via forced alignment.
In Figure 3.6, an aligned, non-incremental gold standard sequence is shown in

the top row (labelled “gold”). �is is the �nal state the incremental processor should
ideally reach. �e intermediate stages necessary for incremental evaluation can be
created from the �nal state by going backwards through the input increments and
removing the current rightmost output word whenever we go past the input increment
that marks its beginning as can be seen in the �gure (e. g. at time 10 we would remove
“Kreuz”, at time 8 “das”, and so on). Following this method, the resulting gold standard
demands that an output increment be created as soon as the �rst corresponding input
increment has been consumed; e. g. a word-IU should be produced by an ASR as
soon as the �rst audio frame that is part of the word in the gold standard is received.
While this will o�en be impossible to achieve, it provides us with a well-de�ned upper
boundary of the performance that can be expected from an incremental processor. In
analogy with ‘current hypothesis’, we call the resulting intermediate stages the current
gold standard relative to a given input increment:

De�nition 3.15. Given a non-incremental, aligned gold standard gold = iu1..k, the
current gold standard at time t is the pre�x for which all increments start before t:
goldt = iu1..l ∶ iu1..l ⪷ iu1..k ∧start(iul+1) ≥ t.

61

3 Incremental Processing and its Evaluation

Nimm

frame

action:
take

da:
request

bitteNimm

frame

modus:
polite

action:
take

da:
request

bitte dasNimm

frame

modus:
polite

piece:
action:
take

da:
request

bitte das KreuzNimm

frame

modus:
polite

piece:
id13

action:
take

da:
request

Figure 3.7: Four subsequent outputs for an incremental semantics component as input
words are being processed.

�is method is directly transferable to other kinds of input and output. Figure 3.711
shows the incremental growth of a network representing a frame semantics; this time
the input increments (in this case words, not bits of audio) are shown in the bottom
row, and the grounded in links which relate output to input are represented by arrows.
(As the networks in this example are more complex, steps are drawn next to each
other and not in rows as in the previous �gures.) If a corpus is available containing
utterances annotatedwith their �nal semantics together with information about which
words are responsible for which bits of that �nal semantics, we can use the same
method to go backwards through the input IUs and create the full corresponding set
of IU states for partial inputs.12 For semantics, this type of resource (containing the
relevant ‘timing’ information) is rare, as making the link between what should be
known based on partial input may not even be easy for human annotators (but see
(Gallo et al. 2007) for an e�ort to create such a resource). Typically, only the �nal
correct semantics is available, with no indication of how it was conceived (see e. g. the
ATIS corpus as used in He and Young 2005). In such a case, the intermediate outputs
must be approximated from the �nal state; we will explain how in the next subsection.

11In the example given, the slot �lling for “modus” depends on “bitte” and all following words. �is
is because the modus could easily turn out to be e. g. ‘sarcastic’ if some other word had been added
later on.

12For conceptual simplicity, hypotheses have been de�ned as sequences of increments which is
su�cient for simpler output such as from speech recognition. More complex output demands for
de�nitions based on sets of increments but otherwise works identically. �e gold standard de�nition
for sets would be goldt = {iu ∈ gold ∶ start(iu) < t}.

62

3.3 Evaluation of Incremental Processors

bitte das KreuzNimm

frame

modus:
polite

piece:
id13

action:
take

da:
request

Figure 3.8: A semantic frame represented in the IU framework without speci�c de-
pendencies between slots and words.

3.3.1.2 Evaluation with Non-Incremental Gold Standards

Figure 3.8 shows a situation in which a �ne-grained link between input and output
increments cannot be recovered from the available evaluation resource. We then
simply assume that all output IUs are grounded in all input IUs, which is the equivalent
of saying that every input increment contributed to every output increment. �e
�gure only shows the �nal state and we again derive the incremental steps from this
by going backwards through the input IUs, as above. However, no desired output
will disappear from the gold standard because every output is already grounded in
the very �rst input increment (as we don’t know what input increment some output
increment logically depends on). Viewed in the direction of time this means that the
gold standard is demanding that all output increments be known from the beginning;
this is clearly an unreasonable assumption, but as it is kept constant, it allows to
measure the gradual approach towards this ideal.
Such a representation then of course gives us less information, and hence an evalu-

ation based on it can only give a coarse-grained insight into the processor’s perfor-
mance. If we assume that in reality not all output information is available immediately,
the best a processor can do against such a gold standard is that it fares better and better
as more input comes in, and as more and more of what will be the �nal representation
is discovered. Likewise, we loose the ability to make �ne-grained statements about
the timeliness of each output increment.
�ere is a third common case that can be subsumed under this one. Sometimes one

may want to build a processor that is only incremental on the input side, producing
for each input increment an output of the same type as it would for a complete,

63

3 Incremental Processing and its Evaluation

non-incremental input. An example for this would be a processor that predicts a
‘complete’ utterance meaning based on utterance pre�xes. (�is has been explored by
Sagae et al. 2009; Schlangen, Baumann, and Atterer 2009 and Heintze, Baumann, and
Schlangen 2010.) In IU-terms, the output IU is grounded in all input IUs and hence
such a processor can be evaluated against a non-incremental gold standard without
loss of information.

3.3.2 Metrics for Evaluation of Incremental Processors

We now discuss metrics that quantify di�erences between actual and ideal output
(i. e. the gold standard). We identify three categories of metrics: Overall similarity
metrics (measures of equality with or similarity to a gold standard), timing metrics
(measures of the timing of relevant phenomena w. r. t. the gold standard) and di-
achronic metrics (measuring change of the incremental hypotheses over time), which
we will look at in turn. �ese metrics illuminate the di�erent aspects of incremental
performance of a processor, but they are not independent of each other (e. g. timing
can only be measured if something is correct, absolute correctness entails perfect
timing and evolution, etc.). Interrelations of metrics will be further discussed in
Subsection 3.3.2.4.

3.3.2.1 Similarity Metrics

Similarity metrics compare what should ideally be known at some point in time to
what is known at that point. �e only di�erence that incremental evaluation brings
with it is that the comparison is not done only once, for the �nal output given complete
input, but also for all stages that lead to this �nal output. An incremental similarity
evaluation hence will result in a sequence of results per full input token (e. g. per
utterance), where non-incremental similarity evaluation yields only one. To be able
to evaluate a�er every input increment, we need a gold standard that covers the ideal
outputs a�er every input increment, as described above. Figure 3.9 shows such an
incremental gold standard and the IU network (for the same utterance as in Figure 3.3)
produced by an incremental ASR.
�emost basic measure of similarity is correctness: we simply count how o�en the

output hypotheses’ payloads are identical to the current gold standard (i. e. how o�en
hypt ≈ goldt)13 and divide this by the total number of incremental results. In Figure 3.9,
the output is correct four times, resulting in a correctness of 40% (ignoring the
empty, trivially correct hypotheses 1 and 2 in the calculation). Incremental processors
o�en lag behind in producing output for recent input. If this delay (∆) is known

13Again, the ignorance against increment timings is based on the experience that timing deviations
are small and tolerable.

64

3.3 Evaluation of Incremental Processors

bitte dasNimm

bitte esNimm

bitteNimm

bisNimm

bitteNimm

Nimm

bitte das KreuzNimm

bitte dasNimm

bitteNimm

bitteNimm

Nimm

bitte das KreuzNimm

bitte das KreuzNimm

bitte dasNimm

bitteNimm

Nimm

Nimm

similarity
judgement

gold standard

6

2

4

5

7

8

1

9

10

12

11

time

3

Nimm

Nimm

P

C

C

C

!

P

!

C

P

P

system output

Figure 3.9: An ASR’s actual incremental output (le�), the incremental gold standard
(right) and a basic similarity judgement (center): correct (C), pre�x-
correct (P), or incorrect (!).

in advance, it can be taken into account, de�ning a delaydiscounted correctness

which, if measured at time t only expects a correctness relative to the gold standard at
time t−∆; see Section 5.5.1 for amethod that employs this type of evaluation. However,
the processor’s lag will o�en vary with the input, which a �xed ∆ cannot account for.
In this case, we propose counting the number of times that the processor’s output is
a pre�x of the ideal output at that instant (hypt ⪷ goldt) and call the corresponding
metric pcorrectness. In Figure 3.9, pcorrectness is 80%.

Correctness has a shortcoming, however, namely that many processors generate
output that is o�en not correct: even the �nal output (i. e. the output when all input
increments have been considered) may contain errors compared to the gold stan-
dard. (Imagine that the ASR in the example from Figure 3.9 had generated “nehme”
instead of “nimm”; this would have rendered all output increments incorrect in this
strict understanding.) In such a case, a processor’s non-incremental de�ciencies (i. e.
de�ciencies that also show in non-incremental processing) block the incremental
evaluation. �ere are two possible remedies for the problem: Relaxing the equality
condition to some task-dependent similarity measure (that is, changing what counts
as correct), or changing the gold standard in such a way that it is guaranteed that �nal
results are regarded as correct. We discuss the latter approach �rst as it allows for a
clean separation between incremental and non-incremental performance.
If we want to ensure that the �nal output of a processor counts as correct, we can

simply use this �nal output as the gold standard and derive from it the set of current
gold standards. To distinguish this from correctness as compared to an independent
gold standard, we call the measure rcorrectness (for relatively correct, relative to the

65

3 Incremental Processing and its Evaluation

processor’s �nal output). �is separates the evaluation of incremental and non-incre-
mental quality aspects: to learn about the overall (non-incremental) quality of the
processor, we use standardmetrics to compare its �nal output with a “true” (externally
generated) gold standard; to focus on the incremental quality, we use rcorrectness.
�e alternative approach of relaxing the equality condition leads us to using task

dependent evaluation techniques that make it possible to measure the similarity (and
not just identity) of IU networks. Which non-incremental measure should be used as
the basis for such incremental performance measure completely depends on the task
at hand: for example, incremental speech recognition can be evaluated withWER or
CER (Boros et al. 1996), syntactic parsing with measures for tree comparison (Carroll,
Briscoe, and San�lippo 1998), semantics by calculating f-measure between frame pairs,
or, as amore complex example, speci�cmetrics for natural language generation (Reiter
and Belz 2009) or machine translation (Papineni et al. 2002). We can ‘incrementalize’
suchmetrics simply bymaking comparisons at each input time step, comparing actual
output and current gold standard, as explained above. Typically, we will be interested
in the average of this metric (how similar in general is the output, no matter how
partial the input?), but we may also want to explore results at di�erent grades of
completeness (does the processor perform worse on smaller pre�xes than on longer
ones?), or the performance development over time.
Also, we may want to allow for certain output di�erences over time, something that

is unique to incremental processing. For example, an ASRmay produce in sequence
the hypotheses “grün”, “grüne”, and �nally “grünes” as it successively consumes more
input. In certain settings, already the �rst hypothesis may be close enough so that the
consuming processor can start to work, and the subsequent hypotheses would not
count as contradictions. In such a case, we can set up the similarity metric so that it
would allow all variants in the comparison with the gold standard, creating a kind
of incremental concept error metric which weighs “sensible” mistakes as less serious
than non-sensible mistakes.

We close with a discussion of two more similarity metrics. Fscore, the harmonic
mean of precision and recall, is a useful metric for similarity when the output rep-
resentation is a ‘bag’ of concepts and no timing information is available in the gold
standard. In such a setting, we can expect the score to be very low at the beginning
(hardly any slot, compared to the correct representation for the complete input, will
have been �lled in the beginning) and to rise over time, as more slots are being �lled
(hopefully correctly). In this case, the shape of fscore curves plotted over di�erent
grades of input completeness can become an informative derived measure. Using
this method, we found (in Atterer, Baumann, and Schlangen 2009) that considerable
knowledge about what the speaker says can be inferred within the �rst 40% of the
utterance (Atterer, Baumann, and Schlangen 2009, p. 1034).

66

3.3 Evaluation of Incremental Processors

Finally, mistakes can be valued di�erently at di�erent stages through the input. �is
is especially appropriate for processors that predict complete outputs (see discussion
above at the end of Section 3.3.1.2) and captures that not making a decision can be
an adequate decision early on but becomes more and more just like making a wrong
decision the more input has been seen. Timeadjusted error captures this notion in
valuing certain events (e. g. the processor deciding on the special class “undecided”)
di�erently, depending on how much of the input has been seen so far. For example,
“undecided” could start at 0% error and rise to 100% error towards the end of the
utterance (e. g. using time or word counts, depending on the task).
When no timing information is available in the gold standard or the processor’s

output, timeadjusted error is the best we can do in measuring timeliness of be-
haviour. However, more �ne-grained evaluation metrics can be conceived when
timing information is available and these will be discussed next.

3.3.2.2 Timing Metrics

Timing metrics measure when some notable event happens in incremental output
relative to some reference time from the gold standard. All other things being equal,
incremental processors are better that give good and reliable results as early as possi-
ble;14 our timing metrics make this precise.
As mentioned above, a characteristic of our notion of incremental processing is

that hypotheses may be revised in the light of subsequent input. �is revision means
that there are two events speci�cally that are informative about the performance of
the processor: when output becomes available, and when it is not revised any more.
We capture this with the following two metrics:

De�nition 3.16. �e �rst occurrence (FO) of an output increment iu j ∈ hyptmax
is the

time t at which it (and all its predecessors) are correctly hypothesized for the �rst
time: FOabsolute(iu j) = argmint iu1.. j ⪷ hypt .

FO is the moment at which no further edit to the increment in the j’th position
of the hypothesis is required. However, even though no edits to the increment are
required anymore, it may still be changed erroneously. �us, it is also important to
know when a processor’s hypothesis about an increment is not changed anymore (has
become stable in the sense of Selfridge et al. 2011):

De�nition 3.17. �e �nal decision (FD) for an increment iu j ∈ hyptmax
is the time t

at which it (and all its predecessors) are correctly hypothesized and not changed
anymore: FDabsolute(iu j) = argmint ∀ti ∈ (t, . . . , tmax) ∶ iu1.. j ⪷ hypt i

14However, if output for the future is generated, we might want to be noti�ed by the processor that
this output relates to future input, e. g. via correspondingly set increment start and end times.

67

3 Incremental Processing and its Evaluation

As a �rst illustration for FO and FD we return to Figure 3.9: for “bitte”, the �rst
occurrence is at step 7. “bitte” is temporarily replaced by “bis” in step 8, and the
�nal decision is at step 9.
To determine timing measures, we use the time di�erence between the occurrence

of the IU in the output and the gold standard IU’s timing. �ere are two issues that need
to be resolved: (a) FO and FD are only de�ned for IUs that are eventually recognized
correctly (and only if all predecessors are recognized correctly as otherwise the pre�x
relation does not hold); and (b) for correctly recognized increments, a decision on
how to anchor the timing comparison needs to be taken.
�e easy solution to incorrect hypotheses is to use the �nal hypothesis of the pro-

cessor to derive the incremental gold standard (as was done for relative correctness

above), even though it may be less accurate or partially incorrect when compared to
a true gold standard. Again, this separates the question of how well the processor
performs compared to an external standard from the question of how well it performs
incrementally; here, the measures will tell us how fast and how stable the processor
is in making the decisions it will ultimately make anyway, regardless of whether
they turn out to be correct. However, one might want to only valuate truly correct
increments sometimes (e. g. as it does not really matter how fast the processor is in
taking wrong decisions, especially if they remain wrong). In this case, some sort of
automatic alignment (such as minimum edit distance, Levenshtein 1966) between
�nal hypothesis and gold standard needs to be found which can be used to match
references to incorrect increments. Of course, the automatic alignment also has to be
taken into account when computing hypothesis similarity.
Regarding the anchoring of the metrics, FO and FD should be di�erentiated because

they capture di�erent aspects of processing. Just like for similarity measures, where
we assume an increment should be generated as soon as it begins to appear in the
gold standard, we propose to anchor FO relative to the beginning of the increment in
the gold standard:

De�nition 3.18. FOanchored(iu j) = FOabsolute(iu j) − start(gold j).

�e above de�nition encourages speculation to happen as soon as some of the cues
relevant for the IU become available. �e ‘faster’ a processor is, the lower its average
FO will be – some processors may even achieve a negative average FO, if they o�en
predict output before any (direct) evidence for it was available.
Conversely, but again resembling the approach taken with similarity metrics, we

propose to anchor FD relative to the end of the increment in the gold standard, as it is
only reasonable to take a �nal decision once all the corresponding input (as speci�ed
by the gold standard) has been observed:

De�nition 3.19. FDanchored(iu j) = FDabsolute(iu j) − end(gold j).

68

3.3 Evaluation of Incremental Processors

�e more reliable a processor is, the lower its average FD will be. �e remarks on
partially incorrect hypotheses given above similarly apply to anchoring. FD can only
be measured a�er processing has �nished; during processing it is unknown whether
an IU will be withdrawn later on.
Returning again to Figure 3.9, “bitte” started at 6 but only appeared at 7, hence

FOanchored(bitte) is 1. Looking back at the time-alignment in Figure 3.3 we see that the
alignment of “bitte” changes between steps 8 and 9 (and is only correct at step 9).
As timing is ignored in the pre�x operation used above (which is based on increment
similarity not identity), FDanchored(bitte) is also 1.
Whether timing metrics should be measured on an absolute or relative scale de-

pends on the task at hand and the granularity of the available gold standard. For
example, in Chapter 5, timing of speech recognition output will be evaluated in mil-
liseconds but timing has previously been measured as utterance-percentages in an
evaluation of a reference resolution task in (Schlangen, Baumann, and Atterer 2009).
�e statistics of these events over a test corpus convey useful information about

the processor: the distributions for FO and FD indicate how much the processor lags
behind in producing output given the relevant input, and how long it takes for the
processor’s decisions (given all relevant input) to become stable, respectively. �e
average FO can be used to determine the (average) lag that is incurred by the processor
before output becomes available (that, however, may be revoked a�erwards). FD can
be used to determine stability, at least under the assumption that hypothesis timing
and gold timing do not deviate much. Processors with low variance of timing metrics
are more predictable in their processing outcomes.
In some cases, these metrics may be more important for speci�c tokens than others,

and this will be explored in Section 5.6. Even though the full distribution contains
useful information, analyses in this thesis will o�en be restricted to reporting means,
medians and standard deviations to describe the distributions.

3.3.2.3 Diachronic Metrics

In some sense, the types of metrics presented so far cast a static look on the processing
results, with the similarity metrics describing whether a result (at a given time step)
is correct or not, and the timing measures describing when correct results become
available, given the whole set of outputs. �e metrics discussed now round out the
set of metrics by describing what happens over the course of processing the input –
the diachronic evolution towards the �nal results.
One metric is based in the number of edits between successive hypotheses that did

occur as compared to the number of edits that should have been su�cient to generate
the �nal result:

69

3 Incremental Processing and its Evaluation

De�nition 3.20. Let Noptimal = ∣di� (hypt0 , hyptmax
)∣ the number of edits that is neces-

sary (to generate the �nal hypothesis without any intermediate errors) and Nactual =
∑tmax

t=1 ∣di� (hypt−1, hypt)∣ be the number of all the edits that actually occurred over the
course of incremental hypothesis generation. �en we de�ne the edit overhead (EO)
as the proportion of all edits that result in unnecessary overhead when interpreting

all the edits that are output by the processor: EO = Nactual−Noptimal

Nactual
.

EO thus measures the proportion of unnecessary or even harmful edits among the
overall edits to the processor’s output. If an incremental processor ever ‘changes its
mind’ about previous output, it will needmore edit operations to revoke or substitute a
previously output increment and EO increases. EO, being a proportion, can bemeasured
as a percentage between 0% (for an ideal processor) and 100% (for a processor that
changes its mind in�nitely).15 In the running example from Figure 3.3 above, there
are 10 edit operations for a total of 4 words, resulting in an EO of 60%.16
Why does edit overhead matter, and why do we need another metric to cover this?

Remember that in incremental systems, subsequent components may start to work
immediately with incremental outputs of their predecessors. Hence, unnecessary edits
mean unnecessary work for all consumers (and, possibly, for their consumers). A
processor that frequently changes previously output hypotheses (we call such changes
jitter) may still go unpunished in similarity metrics (as it may produce the same
amount of correct intermediate results, but in a “harmful” order) and while there are
in�uences on timing metrics (see next subsection), edit overhead allows for a direct
quanti�cation.

EO describes the overall stability of the output of a processor. However, EO does
not describe the stability of individual units. Such a measure can be derived from
timing metrics: the time that it takes for an increment to settle a�er it has �rst been
hypothesized (i. e. the time that it takes to become stable) can be called correction

time. Average correction time can simplistically be computed from the di�erence
between FO and FD. An external con�dence measure can be based on this statistic,
combined with the ‘age’ that an increment has reached at runtime (the time that
it has survived without being revoked): for example, if a processor is known to
have an average correction time of less than 500ms for, say, 90% of its output
increments, then one can be certain to a degree of 90% that an increment that has
been around for 500ms will not be revoked anymore. While this does not tell whether
an increment is �nal or not, it helps to make probabilistic judgements. Furthermore,

15Depending on the operational costs for the consumers of the incremental output, di�erent costs
might be assigned to addition, revocation and substitution which would result in an extended version
of EO.

16�is counts substitution as two operations: �rst revoke the old, then add the new word. Consider-
ing substitution as one operation would result in an EO⊘ of 43%.

70

3.3 Evaluation of Incremental Processors

the proportion of increments that are immediately correct (i. e. have a correction
time of 0, respectively FO = FD) is informative as it describes the degree of non-
monotonicity of the relevant, �nal output.
One drawback with above stability judgements is that timing metrics like FO and

FD can only be computed for increments that ‘survive’ until the very end. However,
a processor (with EO > 0) generates many increments that are not part of the �nal
hypothesis. �is makes the probabilistic assumptions from above overly pessimistic,
because the survival time of increments that are later abandoned is systematically
shorter than that of increments that persist. Stability can also be estimated based on
survival times of all the increments generated ‘along the way’ and the two estimates
will be compared in Chapter 5.4. However, this stability estimate is much more
computationally expensive, as all increments have to be considered, not only those
that make it into the �nal hypothesis.

3.3.2.4 Interrelations between Metrics

In general, a processor should perform as good as possible in all the metrics presented
above. In practice, the importance of some metrics may be higher than for others.
�ere are interrelations between metrics and these can be exploited by trading one
aspect of incremental performance against another. �is subsection aims to describe
the interrelations between metrics and on this basis, favourable trade-o�s will be
explored in Chapter 5.5.
To begin with, there are some simple interrelations: perfect correctness is equiva-

lent to perfect timing (FO and FD). Both entail zero EO, but the reverse does not hold
as edits may have happened too late (or too early). While late decisions are accounted
for by pcorrectness, edits that come too early hurt correctness. As a consequence, a
clairvoyant processor that generates the correct �nal result right from the beginning
would be incorrect against an incremental gold standard up until the very end. �us,
high correctness is not a suitable target per se. However, similarity is a good indicator
of whether processing is running as expected and the development of a measure over
time can give insights in both processing and properties of the corpus.
A processor that is not always correct is faced with trade-o�s: improving timeliness

(FO) by making it hazard guesses earlier means that it is more likely to get something
wrong (hurting both correctness and EO). In reverse, usingmore time for deliberation
of a hypothesis may reduce EO (which is a major objective for incremental speech
recognition; cmp. Chapter 5.5), but also delays decisions, hurting FO. �e impact on
FDmay be di�erent than on FO, as faulty intermediary decisions can be avoided with
longer deliberation.
Care must be taken because a processor can also ‘cheat’ (maybe unintentionally) by

exploiting the fact that �nal hypotheses are proposed to be used as the gold standard

71

3 Incremental Processing and its Evaluation

for incremental evaluation. A processor that outputs some hypothesis at t0 and never
changes it reaches perfect scores in all metrics, but the non-incremental performance
is nil. �us, incremental metrics should never be the only target for optimization.
In our experience, improving a processor’s non-incremental performance (that is,
the result for the complete input sequence) will o�en also improve the incremental
properties, as non-incremental performance is an upper bound for all incremental
processing.
Finally, good performance in some metric may be more important than in another

for a given application. �is has to be taken into account when comparing di�erent
processors for a given task. Especially, once decisions are to be based on incremen-
tal hypotheses (e. g. decision to nod to signal understanding), a certain degree of
con�dence in that hypothesis may have to be reached which can be derived from
correction time curves.

3.4 Summary

�is chapter has laid out the notion of incremental processing to be used throughout
the thesis, based on the insight that incremental language processing needs to be non-
monotonous, that is, allow to change previously generated intermediate hypotheses.
�e requirement of structured incremental data (for both input and output) us-

ing interlinked units of incremental processing (IUs) was described and we have
formalized a scheme for evaluating incremental processors along three dimensions:
similarity of results to a given gold standard, timing of individual output increments,
and diachronic evolution of the incremental hypotheses.
�e various aspects of incremental processing cannot be reduced to one single

performance measure, as there are di�erent dimensions of processing. However,
the performance of processors along these dimensions interrelates. Knowing these
interrelations, application-speci�c optimizations can be performed that result in good
trade-o�s.
�e next chapter presents the so�ware architecture of our toolkit for incremental

spoken dialogue processing that operationalizes our notion of incremental processing.
Processors implemented in the toolkit are then described in the later chapters and
are evaluated along the evaluation scheme presented here.

72

4 A Software Architecture for Incremental Spoken

Dialogue Processing: INPROTK

�is chapter describes InproTK, the so�ware toolkit for incremental spoken dialogue
processing that has been developed in the context of this thesis and that is used in the
example applications.1
Chapter 2 showed that dialogue depends to a large degree on timely interaction

(in order to quickly establish common ground and to quickly react to feedback) and
inferred that incremental processing is a way of meeting this requirement. In addition,
Chapter 2 argues that architectures for dialogue processing need to be modular in
order to be �exible, to support concurrent processing, and for cognitive plausibility.
At the same time, information exchange between modules should be broad and a
module should be allowed access to all lower-level information as this can potentially
be relevant for the module’s decision making (e. g. a semantic processor might need
access to prosody to di�erentiate between di�erent meanings). Finally, we saw that
current systems lack a stringent model of incrementality and, as a consequence can
only be partially incremental and only partially meet timing requirements.2
Chapter 3 introduced the IUmodel for incremental processing that forms the basis

for our so�ware implementation. Chapter 3 represented information both as full
hypotheses as well as using di�erences between successive incremental hypotheses.
InproTK supports both, absolute and di�erential representations for hypotheses.
Following the IUmodel, InproTK builds and uses a network of highly interconnected
incremental units at runtime to represent all information derived from the dialogue as
well as the system’s information state at any point in time. �is (dynamic) IU network
is produced by a (static) network of processing modules, or other, less formalized
processing schemes.
�e IUmodel has predominantly been used to describe input processing, that is,

the analysis of incoming information and aggregation of information to larger, more
abstract units of information. InproTK also supports incremental output generation
which requires the �ssion of larger IUs into smaller sub-units. �e implementation
of both input and output in one system explains many of the di�erences between
InproTK and the original IUmodel that we point out in this chapter.

1�e InproTK open source so�ware project is hosted at SourceForge: http://inprotk.sf.net.
2An exception being the Numbers system (Skantze and Schlangen 2009), which is also based on

the IU model and which can in parts be seen as a predecessor to InproTK.

73

http://inprotk.sf.net

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

InproTK has been developed since 2007 in the incremental dialogue processing
project at the University of Potsdam.3 �e goal of that research project was to explore
methods of incremental dialogue processing (based on the IUmodel) with a focus on
prototype implementations for limited sub-problems of dialogue. InproTK mirrors
this focus in that it is fully incremental from the ground. However, some practical
ingredients necessary for building fully operational SDSs may still be missing.
InproTK is being developed as an open research platform, implemented completely

in the (widely used, industry standard) Java programming language, and distributed
as open source so�ware.4 As a research platform, most so�ware modules allow for
low-level access and perform relatively lax checks on their inputs. Of course, this
�exibility incurs responsibility on the side of the programmer who uses such modules,
calling for a cooperation-based programming style that requires to check all important
assumptions. O�en, interfaces were later adapted to meet new requirements. It turns
out that the author is surprised how well InproTK has coped with ever-changing
requirements and how stable much of the foundational code and concepts have been.
While the core of InproTK is very general, the implemented processors follow

an evidence-driven (bottom-up) approach where incremental units are gathered by
lower-level processors, passed on to higher-level processors which analyze them and
ground new IUs on this evidence. �e opposite, expectation-driven (top-down) pro-
cessing is certainly possible as well; however, allowing bi-directional data exchange
would complicate inter-module communication immensely. As a �nal remark, se-
curity and stability are of limited interest in research systems (that only need to last
until the experiment is over) – it is strongly advised not to rely on InproTK in open
and potentially hostile environments.
�is chapter covers the properties of incremental units (IUs), the IU hierarchy

and how the IU network is constructed in Section 4.1, the processing schemes and
inter-module communication in Section 4.2, additional infrastructures provided
to facilitate building SDSs in Section 4.3, and �nally discusses the current state of
InproTK in Section 4.4.

4.1 The Data Model: Incremental Units

Incremental units (IUs) in the model by Schlangen and Skantze (2009, 2011) have
the two related properties of holding minimal amounts of information and of being
minimal units for processing. �e ‘size’ (and timespan covered) of the units varies
widely and depends on the level of abstraction of the contained information (and
the implemented granularity of the producer). As units are usually combined in

3More information on the incremental dialogue project InPro is available at http://www.inpro.tk.
4InproTK and its version history are available via SVN from http://sf.net/p/inprotk/code/.

74

http://www.inpro.tk
http://sf.net/p/inprotk/code/

4.1 �e Data Model: Incremental Units

Table 4.1: Five classes of general properties of the IU base class and exemplary opera-
tions illustrating the available capabilities.

comparison: identity getID()

equality payloadEquals(), compareTo(IU)
timing startTime(), duration()

network: groundedness ground(IU), groundedIn():List<IU>
same level getSLL(), getNextSLLs():List<IU>

status: information status commit(), isRevoked()
delivery progress getProgress(), getOngoingGroundedIU()

updates: update behaviour addUpdateListener(), updateOnGrinUpdates()
noti�cation notifyListeners()

debugging: textual representation toTEDviewXML(), toLabelLine(), toPayLoad()

the abstraction process, the higher the level of abstraction, the larger the units (e. g.
individual phonemes are combined to form words, one or more words are combined
to a semantic unit, . . .) and the less ‘concrete’ the contained information.

IUs are typed objects using the Java type system, all sub-classing the same abstract
base class IU. IUs of di�erent types represent di�erent types of information (phonemes,
words, phrases, . . .). As a short overview, general properties and some exemplary
operations of the IU base class are shown in Table 4.1 and largely mirror the de�nition
of IU properties by Schlangen and Skantze (2011). Extending that classic IUmodel,
InproTK de�nes a progress status for every IU to explicitly account for IUs that
represent data about the past, the future, or events that are currently ongoing.5
Not shown in the table and not included in the abstract IU base class are all payload

�eld and payload operation de�nitions (apart from the abstract toPayLoad():String
used for debugging purposes). �ese �elds and operations have to be de�ned by
the concrete IU sub-types. For example, SegmentIU de�nes phonemic identity of a
segment and start- and end-time in the recognized user speech. As can be seen
in Table 4.1, InproTK’s IUs are full-blown objects which feature relatively complex
operations (such as �nding the IU among the subordinated IUs that is currently
ongoing). �is is especially true for some payload operations, where, for example, a
word could be queried for its accentuation status, which it will determine by querying

75

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

IU

SegmentIU SyllableIU WordIU SemIU InstallmentIU ActionIU

SysSegmentIU TextualWordIU PhraseIU SysInstallmentIU

PhraseBasedInstallmentIU HesitatingSynthesisIU TreeStructuredInstallmentIU

StartActionIU

Figure 4.1: An excerpt of the InproTK built-in IU type hierarchy.

for accentuation the syllable IU that holds lexical stress. In contrast, IUs as de�ned by
Schlangen and Skantze (2011) are primarily passive containers of information.
A part of the IU hierarchy in InproTK (for phonemes, words, installments, . . .)

is shown in Figure 4.1. As can be seen, the hierarchy o�en contains multiple levels
with IU types for speci�c uses building on more general types, which allows to share
concepts (and code). For example, some IU type de�nitions for both input and output
processing are partially shared (SegmentIU for input is sub-classed by SysSegmentIU for
output) or even identical (WordIU). �is is a characteristic feature of InproTK.
In this section, only the main features of IUs are explained and the IU hierarchy is

shown to exemplify how sub-classing is used to simplify IU handling. Interfaces or
implementation details of sub-types are discussed only as far as they are necessary
for explanation. More details will be explained in later chapters, when necessary.

4.1.1 The IU Network

IUs, being minimal units, need to be linked together to form a whole, complex
information representation. �e IUmodel uses two types of links for this: grounded-
in links to mark hierarchical dependencies, and same-level links to organize units on
the same level.
In InproTK, grounded-in links (GRINs) are used to point to related IUs on a lower

level of abstraction, that is, GRIN links always point down, towards lower levels of
abstraction and, ultimately, the primary speech signal. �is di�ers from the origi-
nal IUmodel, where grounding marks informational dependency. For bottom-up

5�e progress information could, in principle, also be derived from the IU’s timing and the current
wall-clock time; however, IUs that describe the future may still be missing precise timing.

76

4.1 �e Data Model: Incremental Units

IU4 IU8
IU13

IU12

IU17

IU9

Figure 4.2: IUs interconnected to form a network (including interpretation
alternatives).

input processing, this makes no di�erence but for output processing would result
in links pointing upwards, in the opposite direction than on the input side. �is
reversal would render the use of IU types on both input and output sides di�cult or
impossible. In InproTK, some IU types (e. g. WordIUs) can be used for both input
and output processing as GRINs always point in one direction (towards segment IUs)
even though informational dependency di�ers between input and output side. In the
implementation, links are bi-directional, that is, the IU network is a doubly-linked
structure that can be e�ciently traversed in both directions, so that the logical link
direction does not impose any limitations on processing capabilities. AsGRINs always
point down, they can be used to avoid replication of information: for example, a
design principle is to use recursive de�nitions of start- and end-time of any IU by
following GRINs until IUs that represent speech audio, the system’s primary signal
(cmp. Section 2.1.2), are reached (which contain the actual timing information).
Units on the same level of abstraction are linked together with same-level links

(SLLs); a link between two IUs indicates the (temporal) adjacency of two units. �is is
a simpli�cation of the more general IUmodel that allows many types of relations via
di�erent types of SLLs; so far, there was no need for more than the adjacency relation
in InproTK.
�e SLL relation has a cardinality of 1:n, that is, each IU has at most one same-

level link to its predecessor unit but multiple IUs may have the same predecessor.
�is can be seen in Figure 4.2, where both IU12 and IU13 point back to IU8. �is
allows for alternative hypotheses using tree structures. �e more general case of
allowing to share partial alternatives via any directed acyclic graph (i. e. a cardinality
of m:n) was deemed too complex for implementation purposes. �e implemented
incremental modules (cmp. Section 4.2) only output one-best hypotheses, which

77

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

allows for the e�cient computation of hypothesis di�erentials. GRIN is a many-
to-many relation, that is, each IU may be grounded in several units and may itself
ground several other, as can also be seen in Figure 4.2. �is is necessary to allow the
association (aggregation) of multiple lower-level IUs to one higher-level, and to allow
for alternative interpretations across IU processing levels (in Figure 4.2, IU9 and IU17

would probably be interpreted as representing alternatives.)
During processing, IUs are added to the network as new insight is gathered, or

removed from the network if hypotheses (or parts thereof) are abandoned. At any
point in time, the network represents all the information that is known to the sys-
tem. �e network is highly dynamic, with changes to the network re�ecting the
system’s changing internal state over time. �e next subsection describes the way that
processing in InproTK may extend and evolve the IU network structure.

4.1.2 Triangular Data Models

Systems built with InproTK have mostly used data-driven (bottom-up) processing
schemes. �e IU architecture (and InproTK’s data models) would likewise support
expectation-driven processing schemes (where expectations guide upcoming data
analysis). However, expectations would need to be communicated towards the lower-
level processors. InproTK’s processing has also mostly followed a one-best approach
(which allows easy computation of di�erential hypotheses as outlined in Section 3.2.2).
One-best and expectation-based processing do not match well as only one single
expectation could be transported. �is subsection instead explores the data-centric
bottom-up, one-best approach to incremental processing as implemented and used
in InproTK.
As explained above, IUs on higher levels are less granular than on lower levels, and

higher-level IUs are o�en associated to several IUs on the lower level. �is also means
that during input processing some IUs on the lower level cannot yet be associated to
an IU higher up because some ‘ingredients’ for that higher-level IU are still missing.
As a consequence, structure building on higher levels lags behind in input processing.
�is can be seen in Figure 4.3 (le� side), where no word has been recognized yet for
the stretch of audio that follows “in”, and “in” itself is still missing an interpretation.
Input processing forms a bottom-up le�-to-right triangular data structure.
Similarly, for output processing, units are larger on higher levels, and more context

(i. e. lookahead into the future) is typically required to make sensible decisions. On
lower levels, in contrast, units need not be constructed immediately, but only just-in-
time, as they are required by lower-level processors (and ultimately, speech output).
Using the top-down le�-to-right triangular processing scheme shown in Figure 4.3
(right side), the network remains �exible and e�cient when accommodating re-
interpretations and only minimal amounts of re-processing are required.

78

4.1 �e Data Model: Incremental Units

Figure 4.3: Data-driven processing results in triangular IU structures in InproTK: a
bottom-up ‘input triangle’ on the le�, a top-down ‘output triangle’ on the
right; both are governed by dialogue management and decision making at
the top.

Imagine that in the example in Figure 4.3, the next word recognized in the input
could be “gelb”, resulting in a reference (“das Kreuz in gelb”) that is unresolvable
in the domain. Dialogue management would need to abandon the current output
plan of generating an acknowledgement and replace it with some other response (e. g.
signal non-understanding). However, only minimal re-processing overhead would
have occurred as, for example, NLG had not yet decided on a referent and speech
synthesis only pre-generated a small amount of output (as shown in the �gure).
Dialogue management, shown at the top of Figure 4.3, has the task of governing the

two triangles, taking the decision when to actuate output processing given some input
interpretation. �is decision-making may ‘break’ the re-interpretation processes:
when a decision becomes observable to the interlocutor, she is faced with a system
action to which she will inadvertently react herself, even if the system abandons the
underlying hypothesis. For example, if dialoguemanagement decides to start speaking
and revokes this decision quickly a�er, the interlocutor will notice a false start and
may react to it. Buß and Schlangen (2011) have implemented dialogue management
strategies to cope with this inevitable problem as best as possible. DeVault, Sagae,
and Traum (2009) try to �nd points of maximum understanding to identify where
breaking the reinterpretation does not do any harm.

79

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

�e IU network as a whole is interlinked so that links can also be traversed between
output and input triangles: for example, mirroring the user’s referring expression
helps to build rapport (Brennan 1996); the generation component can follow the
GRINs to �nd out whether the user said “Kreuz”, “X” or “das rote Teil” to refer to a
piece (represented by a single logical form) and easily mirror that referring expression.

�e strength of the IUmodel is its capability to handle incrementally evolving and
changing hypotheses in a principled way. An implemented system is additionally
required to keep factual data which does not change, and on which these changing
hypotheses are built. �us, the �nal aspect of the InproTK datamodel is the BaseData
store. �e BaseData store contains the user-provided input in several streams that can
be accessed based on their timing information such as speech from the microphone,
derived ASR feature vectors, or potentially camera feeds from a webcam, or derived
gaze information. While not currently implemented, system output could also be
stored for future reference. Base data is not a matter of hypothesis but a matter of
fact, which is the principled di�erence to IUs. Hence, base data need not be revisable.
IUs do not need to actually store copies of the input data but merely refer to the base
data store which results in a space-e�cient implementation.
�e next section discusses the processing modes that can be used to produce IU

networks as described in this section.

4.2 The Processing Model

�e IU network can be created and manipulated in several ways. �e conceptually
simplest way is by using incremental modules as proposed by Schlangen and Skantze
(2009) which is detailed in the following subsection. Two other processing schemes,
one based on active IUs, the other based on IU update listeners, will be outlined in
Subsection 4.2.2.

4.2.1 Incremental Modules and Inter-Module Communication

Incremental modules are the ‘classic’ processing scheme in the IUmodel. �ey match
very well the division of SDSs into components as presented in Section 2.2, especially
Figure 2.3, which showed the information �ow between components in a dialogue
system. Each component in the dialogue system would be realized as an incremental
module in InproTK. Section 3.2.1 de�ned abstract incremental processors which the
incremental modules presented here implement.
Incremental modules consist of a le� bu�er, a processor, and a right bu�er, where the

processing mode is to consider input in the le� bu�er, process it (possibly considering

80

4.2 �e Processing Model

leftbufferB processorBrightbufferB

IU4
leftbufferA processorA rightbufferA

IU4

IU1IU2IU3IU1IU2IU3

SLL

IU4GRIN

Figure 4.4: Two incremental modules A and B consisting of a le� bu�er, a processor
and a right bu�er. Module A’s right bu�er shares its content with module
B’s le� bu�er. Input and output IUs are connected with grounded-in links
(GRIN); successive IUs on one level are linked with same-level links (SLL).

some state internal to the processor), and to provide (or alter) output in the right
bu�er.6 As can be seen in Figure 4.4, incremental modules are interconnected by
conceptually superimposing one module’s right bu�er with another module’s le�
bu�er. �us, output that is changed by one module automagically results in an input
change in connected le� bu�ers. ‘Superimposed bu�ers’ are implemented by directly
passing on data from from a right bu�er to all connected processors’ le� bu�er update
methods. (�at is, le� bu�ers only exist as a concept but are not explicitly represented
in the implementation.)
�e module network is (statically) con�gured in a system con�guration �le and

modules need not necessarily form a pipeline, as one module may output to and
receive input from several other modules.7 Most modules, however, expect input
IUs of a speci�c type only, and deliver output IUs of another type (or a few related
types). �us, care must be taken to connect modules to each other that actually can
work together in a meaningful way. Currently, there are no checks implemented that
enforce the con�gured module connections to be compatible (or meaningful). Care
must be taken by module implementers to check the incoming IUs for their type and
to handle miscon�gurations (e. g. by throwing errors). Some debugging modules,

6�e IU model by Schlangen and Skantze (2011) additionally allows for the opposite direction in
information �ow. For implementation simplicity, this is not implemented in InproTK, as di�cult-to-
solve concurrency problems could potentially arise with such a circular processing scheme.

7In principle, a module may also connect its right and le� bu�er; this may be useful for parsing,
where constituents need to be combined to form other constituents in a later step. However, as noted
in Footnote 6, concurrency issues must be addressed.

81

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

such as a generic hypothesis dump utility as well as a module visualizing the current
state of the IU network accept any type of IUs.
Section 3.2.2 developed that incremental data can be dealt with either as full hy-

potheses or as di�erences between successive hypotheses and de�ned edit operations
to describe these di�erences. �ree types of edits are implemented in InproTK to
inform about bu�er changes:

• an add edit informs the processor about an IU newly added to the le� bu�er,
• a revoke edit informs the processor that the IU that previously ended the current
hypothesis has been revoked from the le� bu�er, and

• a commit edit informs the processor that an IU in its le� bu�er has become
stable and will not be revoked in the future.

When receiving one or multiple edits, this may trigger processing and lead the pro-
cessor to change its own right bu�er (adding, revoking, or committing to its own
IUs) and these edits are again passed on to connected modules.
Exchange of edits can be more space-e�cient than passing around full hypotheses,

and operations can o�en be de�ned more easily based on edits, if only the changed
part of the hypothesis is relevant. However, depending on the task of the module,
using full hypotheses may be more convenient than using edits (i. e. di�erential
hypotheses). For this reason, hypothesis changes in InproTK are (redundantly)
characterized by passing both the complete current bu�er (a list of IUs) as well as
the di�erence in edits between the previous and the current state (a list of edits
of IUs), leaving modules a broader choice of implementation. InproTK’s abstract
implementation for incremental modules that all implemented modules are based on,
IUModule, allows access to both full and di�erential representations as input and gives
the implementer the choice to provide as output either a full hypothesis (in which
case the edits are computed), or the edits that should occur (in which case the full
hypothesis is computed).
Incremental modules in InproTK are not fully separate components in the sense

of execution threads in a concurrent, multi-threading environment (as de�ned by the
Java virtual machine) in that module boundaries are not automatically also thread
boundaries. In contrast, execution threads may enter an incremental module by
calling the le� bu�er update method, incur some processing and then exit the module
via right bu�er update calls, continuing on to further modules. �e permeability of
component boundaries may result in synchronization issues when multiple threads
are used but it avoids the cost of multiple thread-boundaries when using many but
relatively simple modules. No systems built with InproTK have required a thread
separation so far. If necessary, it would be simple to introduce thread-boundaries
in the abstract IUModule class. However, as IUs are interconnected, full separation of
components and access only via calls to bu�er interfaces, as may be seen in the pure
IUmodel, is not a goal of InproTK.

82

4.2 �e Processing Model

Mostmodules can a�ord to be fully event-driven, only being called into actionwhen
their le� bu�er changes. However, some modules may need to endogenously create,
retract ormanipulate IUs, for example based on time-outs. �eymay either implement
above-mentioned thread-boundaries and use their own time-out mechanism, or use
the system-wide time-out facility, which uses a separate signalling mechanism and
currently supports to set time-outs for several types of turn-taking events.
Finally, as currently implemented, all modules live in the same process and shared

memory. However, inter-module communication may transparently use a messaging
protocol by plugging pairs of appropriate communication modules into the module
network.8 In such a use-case it may be pro�table to only send edits and to leave the
reconstruction of the full state to the receiving side. Notice that IU links would not
be readily available across processes, unless special care is taken to replicate these as
well, or to obtain them on demand. Contrasting InproTK’s implementation, IPAACA
(another incremental dialogue architecture that was �rst described together with
InproTK and JINDIGO, yet another incremental dialogue architecture, by Schlangen
et al. 2010) is tailored for dialogue systems spanning multiple processes (potentially
on di�erent computers) and with modules implemented in di�erent programming
languages. IPAACA uses message passing between modules and remote procedure
call mechanisms when querying or modifying IUs that are owned by a di�erent
module (the concept of IU ownership, a feature of the abstract IUmodel, is not used
in InproTK).

4.2.2 Alternative Processing Schemes

Incremental modules are a conceptually simple way of structuring the full system
into smaller (and re-usable) sub-components which perform simpler tasks. However,
as currently implemented, some processing steps, such as signalling back to an earlier
module are impossible, and implementing these would erase much of the current
simplicity (both conceptually and implementation-wise). We hence propose two
other schemes for more advanced processing that can be combined with incremental
modules: one based on active IUs and the other based on update listeners. Of course,
combinations of these processing modes with IUmodule-based processing is possible,
even though it may increase the complexity of the resulting control �ows.
We call IUs active IUs if they do arbitrarily complex processing themselves, includ-

ing the generation of more IUs (that may themselves e�ect more processing). IUs are
informed about their commit and revocation status (cmp. Table 4.1) by right bu�er
objects, and hence can act upon these events, allowing for a mixture of this processing

8Early versions of InproTK used the open agent architecture (OAA, Martin, Cheyer, and Moran
1999) for inter-module communication but other communication means could also be used.

83

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

leftbufferB processorB rightB

IU4

leftA processorA rightbufferA

IU4

IU4

update
listener

im
p
le
m
e
n
ts

U
p
d
a
te
L
is
te
n
e
r

subscribes to IU

3. listener
is called

1. processor
changes IU

2. change
causes update

Figure 4.5: Updates to IUs enable right-to-le� communication across the le�-to-right
interface between incremental modules: processor A implements the
IUUpdateListener interface and subscribes to updates for each IU that it
puts into the bu�er. If processor B later changes an IU, the change will
cause an update, the listener is called, and the processor can react.

scheme with module-based processing. Systems that employ active IUs are presented
in the example application in Section 5.6, as well as in (Baumann et al. 2013).
Update listeners can be added to IUs and are called upon speci�c events such as

edits, progress change, or other events. �us, they can perform all the processing that
modules can, including the generation of new IUs (to which they would need to sub-
scribe corresponding update listeners similarly to processors that are interconnected).
Update listening can also be employed by modules to enable right-to-le� feedback
across the le�-to-right bu�er interface as shown in Figure 4.5. �e power of update
listeners comes with an increased complexity of the control �ow and requires careful
implementation in multi-threaded applications. Implemented somewhat di�erently
from InproTK, JINDIGO (Schlangen et al. 2010; Skantze 2010) makes extensive use
of update listening (from where this addition to InproTK was inspired), even to
implement standard module communication.
To conclude, incremental modules provide a robust and stable interface that can

most easily be re-used across systems. In contrast, while active IUs and update
listeningmay sometimes require careful tuning to the application, these schemes allow
for advanced processing options that may be required for some intended behaviour.

84

4.3 Infrastructure

4.3 Infrastructure

InproTK also includes infrastructure not yet discussed that supports rapid prototyp-
ing of (partial) incremental dialogue systems in research environments.
Command-line applications that start up InproTK help to get a �rst grasp at using

InproTK’s basic modules, simplify common con�guration choices via command-line
options and can transparently be interchanged to switch between speech and text input
for testing purposes. InproTK builds on CMU Sphinx’ con�guration management
for simple yet powerful con�guration of system modules and their interconnection.
Audio input and output can be con�gured to use the sound card, audio �les, or

RTP (Schulzrinne et al. 2003) for audio transport via a network. Multiple channels
can be used simultaneously, for example to log an interactive session to disk.
InproTK includes a range of GUI components for building partially multi-modal

SDSs in the Pentomino domain that can also be used for other puzzle-playing or
command-and-control tasks. Some GUI components are included to aid in Wizard of
Oz experiments where the dialogue manager is replaced by a human experimenter.
InproTK comes with incremental modules for speech recognition based on CMU

Sphinx-4 (Walker et al. 2004, see also Chapter 5) and speech synthesis based on
MaryTTS (Schröder and Trouvain 2003, see also Chapter 7) which can also be accessed
in simpler, non-incremental modes with support for several di�erent Mary versions,
synthesis modes and voices. In addition, input is prosodically analyzed for pitch,
using a (reduced) version of the YIN algorithm (Cheveigné and Kawahara 2002), and
signal loudness is measured using the revised B-curve �lter (Skovenborg and Nielsen
2004) as proposed by Zemack (2007).

4.4 Discussion

�is chapter presented InproTK, the toolkit for incremental spoken dialogue pro-
cessing developed in the context of this thesis. In the toolkit, data is represented in
minimal units of information that are interconnected to a network which represents
the system’s understanding of the world. �e network is constructed incrementally, by
processing modules or through other processing schemes, as input becomes available
to and output is generated by the system.
As can be expected, InproTK is the result of a learning process and this learning

process is far from over; in other words: InproTK does not represent the ground
truth for implementing the abstract IUmodel (let alone for incremental processing
in general). Neither do its two main competitors, JINDIGO and IPAACA.
Some choices for an ideal embodiment of the IU architecture and the associated

processing patterns remain open questions. One fundamental trade-o� to be con-

85

4 A So�ware Architecture for Incremental Spoken Dialogue Processing

sidered is that of modularity and data encapsulation on one side vs. integration and
availability of data for processing on the other side. InproTK tries tomediate between
these extremes through the use of clear and simple module interfaces on one side
that nonetheless leave free access to all information via the IU network. While the
present author has become very familiar with how much one module may �ddle with
parts of the IU network that ‘belong’ to a di�erent module, it remains to be seen how
well this approach scales to other modules, to larger systems, and to programmers
less experienced in using InproTK.
Many patterns for incremental processing within the IUmodel are possible and

three were described in Section 4.2 and are implemented in InproTK. �e original
IU model opens up many possibilities at the cost of some structural redundancy.
InproTK implements only a limited set of IU model capabilities (extending it in
other places), and both JINDIGO and IPAACA do the same but take di�erent choices.
Future work, and with it more experience with incremental processing, will help to
bring about a required set of generic capabilities for IU-based incremental processing.
Hopefully, tested design patterns for modularized incremental processing will emerge
that may provide guidance when tackling new problems. While processing based on
incremental modules as implemented in InproTK provides for a simple and robust
pattern, its insu�ciencies in complex systems (pure bottom-up processing with no
feedback to or expectations for earlier modules, limitation to one-best processing)
are obvious. �ey are justi�ed by InproTK being part of the �rst generation of
incremental SDS architectures and will undoubtedly be overcome in the future.
InproTK is by no means �nished, as important components such as incremental

NLU and NLG for general use and incremental dialogue management are still being
developed, with decision making remaining a major challenge. Modules that do
exist and were implemented as part of this thesis (iSR and iSS, see Chapters 5 and 7,
respectively) are singular and the universality of InproTK would be well tested if
alternative implementations existed. To this end, it is currently planned to integrate
theAndroid iSR component into InproTK as an alternative to the open-source version
to be described in the next chapter.
A �nal issue is that of error recovery: generic support for high-level processing

exceptions could help in error cases and a principled handling of partial failure would
increase system reliability immensely. An error recovery strategy, if implemented in
a speci�c module that governs other, sub-ordinated modules could also be used to
support running multiple, concurrent variations of modules or sub-pipelines that the
governor could select from at runtime.
Another, move would be to abandon the current home-grown object structure and

to base the IU network on a full object-based distributed database. �e advantage
would be full database capabilities, such as transactions, locking, and consistency.

86

Reproduced with kind permission by Heise Verlag and Ritsch&Renn from c’t 16/2012.

5 Incremental Speech Recognition

A spoken dialogue system needs to be able to listen to a user’s speech and hence
speech recognition is the main input channel for any SDS. Incremental speech recog-
nition (iSR) is hence a requirement for any incremental spoken dialogue system. If
incremental speech recognition were infeasible, iSDSs could not become a reality.
�is chapter reports the results of the ‘incrementalization’ of the open-source

speech recognition engine that is integrated into InproTK. �at speech recognition
can in fact be used incrementally is anything but granted and this chapter reports a
detailed evaluation of the relevant aspects for incremental processing.
To provide some background, the next Section 5.1 presents a short introduction

into automatic speech recognition culminating in the central idea of the token pass
algorithm in Subsection 5.1.2.2 which forms the basis for incrementalization as de-
tailed in Section 5.2. Readers familiar with HMM-based speech recognition may want
to skip the background section.
Chapter 3 detailed the notion of incremental processing underlying our approach,

where hypotheses can be changed a�er they are �rst generated, and de�ned metrics
suitable for evaluation. In addition, the trade-o�s between aspects of incremental
performance, such as timeliness and edit overhead, were discussed.
Section 5.3 presents Intelida, an evaluation workbench for incremental speech

recognition that implements the incremental performance metrics and evaluation
results are presented in Section 5.4. Section 5.5 explores optimization techniques
that aim at optimizing performance trade-o�s with a focus on the reduction of edit
overhead while keeping the reduction in timeliness low.
Finally, Section 5.6 presents an application of optimized iSR to a speech-control

task. �e section details the implementation and integration with InproTK, pre-
sented in Chapter 4, an application-speci�c iSR optimization strategy, and a small
user study that shows that iSR allows for well-timed interactions and in which the
application-speci�c optimization strategy somewhat outperforms the generic tech-
niques developed before.
Section 5.7 summarizes and discusses the �ndings in this chapter and outlines

some possible improvements.

88

5.1 Automatic Speech Recognition in a Nutshell

5.1 Automatic Speech Recognition in a Nutshell1

Automatic speech recognition (ASR) faces the problem of identifying the sequence
of words (if any) that are spoken in a given stretch of speech audio.2 Mainstream
ASR technology follows the metaphor of the noisy channel (cmp. Chapter 2) and uses
Hidden Markov Models (HMMs) to handle the separation between noise and signal.

In the application of the noisy channel model to speech recognition, the observed
speech waveform (O) is the signal and the message (W) is a sequence of words. �e
task for theASR (the receiver in noisy channel terminology) is to �nd the one sequence
of words among all possible sequences that is encoded by the signal. All sources of
uncertainty about the message – arising from unclear speech, actual interfering noise,
homophony (di�erent words sounding alike), and others – are modelled by the
channel’s noise source.
An important simpli�cation that makes the ASR task feasible is to assume a closed

language, that is, to assume that the user’s utterance is comprised of words that are part
of a known lexicon (L) and that the spoken sequence of words (W = w1,w2, . . . ,wn)
is limited to being one of all possible sequences of these words (the ASR’s language:
W ∈ L = L∗). A slight extension is what we call rich speech recognition which also
provides the time alignment of words. In that case, the ASR’s output includes timing
information for each word: w = (lexeme; start; end) ∈ W = L × N × N (with the
additional constraint that start < end and these times measured in full frames).
In spoken language, two utterances of the same words will always sound slightly

di�erently. HMMs are a model to deal with this. HMMs are productive stochastic
models, which may generate many alternative observations for a given state sequence.
�e hidden states of the HMM model the word (or phoneme) sequence, which is
said to emit observations that correspond to the speech signal. HMMs can be used
in reverse to �nd the probability for a state sequence given an observation sequence
(P(W∣O)). When usingmaximum likelihood estimation, the ASR’s task is to choose

1Speech recognition has been described by many, and in excellent ways. Notably, Jurafsky and
Martin (2009, Chapters 6 and 9) give an excellent and broad overview, Taylor (2009) details acoustic
modelling, Rabiner and Juang (1993) give detailed proofs of the learning processes, and Gales and
Young (2007) also cover many advanced topics. �e structure of most descriptions is similar, and it is
adopted for this introduction which aims to provide the background necessary and su�cient for the
present purposes.
Readers familiar with HMM-based speech recognition may want to skip this section.
2�is de�nes continuous speech recognition – we leave out the simpler problem of single word

recognition because stretches of speech in natural dialogue most o�en consist of multiple words.

89

5 Incremental Speech Recognition

the one sequence of words (Ŵ) from all possible word sequences that it �ndsmost
likely to be the message given the observation:

Ŵ = argmax
W∈L

P(W∣O) (5.1)

Speech recognition usesmachine learning and the development of speech recogni-
tion systems is largely data-driven. �is means that the types of models for speech
recognition are chosen by engineers, but that the models’ parameters are estimated
from large amounts of training data. Even though the training processes are im-
portant, they are not covered in detail in the descriptions below, as they are not
necessary to understand the remainder of this thesis. However, the requirement of
being trainable is important to understand modelling choices.
In the remainder of this section, we will look at how Equation 5.1 can be broken

into feasible parts using the Bayesian method, how to estimate parameters for the
data models that describe the parts, and how to e�ciently apply them in ASR decoding
using HMMs.

5.1.1 Modelling Speech Data

�e speech recognizer’s probability estimation task formulated in Equation 5.1 can be
broken into two parts by applying Bayes’ rule3, resulting in:

Ŵ = argmax
W∈L

P(O∣W)P(W)
P(O)

(5.2)

Equation 5.2 can be simpli�ed by dropping the denominator P(O). (�e denom-
inator is constant for all W and hence doesn’t change the outcome of the argmax
function.) �us, we get:

Ŵ = argmax
W∈L

P(O∣W)P(W) (5.3)

Practical large-vocabulary continuous speech recognition (LVCSR) systems use an
additional pronunciation model. �is describes how the words are expected to be
spoken, i. e. determines the phoneme sequence that corresponds to the word sequence
(Ph(W)). As a result we get:

Ŵ = argmax
W∈L

P (O∣Ph (W))P (W) (5.4)

3Bayes’ theorem proves that P (x∣y) = P(y∣x) P(x)
P(y)

.

90

5.1 Automatic Speech Recognition in a Nutshell

�e acoustic observations in the observation sequence are not independent of each
other (stemming from the fact that speech parameters change slowly over time).
However, this is assumed by the way the acoustic observations are calculated (see
Subsection 5.1.1.3). �is results in di�erent weights between acoustic model and
language model in the overall probability estimate, which must be countered by a
language model (LM) weight resulting in the slightly adapted equation (Jurafsky and
Martin 2009, p. 349):

Ŵ = argmax
W∈L

P (O∣Ph (W))P (W)LM weight (5.5)

Values for the LM weight are set empirically to optimize recognition on held-out
test data. A typical range for the factor is between 5 and 20 (Jurafsky and Martin
2009, p. 349).4
�e two factors in Equation 5.4 can be described as the prior probability of the word

sequence, P(W), and the likelihood of observing a signal given the word sequence,
P(O∣Ph(W)), where Ph(W) determines the expected pronunciation for the word
sequenceW. Factoring out the phonemization, the speech recognizer closely resem-
bles the standard linguistic structure of grammar, lexicon, phonology, and acoustic
phonetics, and the division of linguistics into sub-disciplines as shown in Table 2.1.
�e three ingredients use di�erent formal models (to capture well the respec-

tive properties of the underlying problems) and model parameters are estimated
independently for the language model, pronunciation model, and acoustic model, re-
spectively, and are easier to estimate from available training data than the direct
probability of how well a word sequence matches a given observation. �e formal
models are recombined in the HMM-based decoding algorithm that we describe in
Subsection 5.1.2.

5.1.1.1 The Language Model

�e language model’s task is to estimate the probability P(W) of any word sequence
W allowed by the language L. Additionally, the language model needs to enumerate
allW inL during the decoding process, see Subsection 5.1.2. �ere are two basic kinds
of language models: structured grammars and unstructured, �at N-gram models.
Grammars are sets of rules that de�ne the structure of the language. Phrase structure

grammars de�ne re-write rules such as "S→NPVP" or "N→ elephant" with capitalized
non-terminal and lower-case terminal symbols. Starting with an initial string "S",
symbols in the string are re-written according to the rules until no non-terminal

4Finally, the changes introduced by the LM weight prefer sequences with fewer, longer words than
more, shorter words. �is, again, can be balanced by an additional word insertion probability. Both LM
weight and word insertion probability are set from held-out validation data to minimize error rates.

91

5 Incremental Speech Recognition

symbols are le�. If rules are weighted the resulting sequence is assigned a probability
estimate by multiplying the weights of the applied rules.5 An advantage of grammars
is that they provide a structure for the word sequence that can be useful in further
processing (e. g. natural language understanding). However, they lack robustness
against unexpected or malformed input: if there is no rule to cover a certain structure,
then all word sequences exhibiting this structure will be excluded. Accurate rule-sets
for probabilistic language models are hard to estimate from data and tedious to write
by hand. A hybrid approach could be to write the rules by hand and to then estimate
rule weights from data.
An N-gram model, in contrast, is a probabilistic model that operates only on the

language surface, assigning probabilities to the word sequence based on the proba-
bilities of sub-sequences. �e correct probability of the sequenceW can be written
as the product of the conditional probability of each word following its predecessors
(Jurafsky and Martin 2009):

P(W) =
n

∏
i=1

P(wi ∣w1,w2, . . . ,wi−1) (5.6)

�e key idea of N-grams is to approximate the true probability of a word following
all of its predecessors by looking at the probability of the word following just the
previous N − 1 words (together forming sub-sequences of length N). In the simplest
case – unigrams with N = 1 – the probability of a sequence W is approximated by
the product of individual word probabilities: P(W) ≈ Πn

i=1 P(wi). For larger N, this
generalizes to:

P(W) ≈
n

∏
i=1

P(wi ∣wi−N,wi−N+1, . . . ,wi−1) (5.7)

Limiting the le� context is necessary to be able to reliably estimate the probabilities
by counting the relative occurrence in training data, where the complete word se-
quence might not occur (resulting in zero probability for the sequence) even though
shorter sub-sequences do occur.
Now, the larger N, the closer the approximation approaches the true probability.

However, our estimation of an N-gram’s probability will become less reliable for larger
N due to data sparsity: e. g., some N-grams may never be seen in training data and
still occur during recognition. In the simple model, such N-grams will be assigned
zero probability, and as a consequence the whole sequence probability will be zero
(as it is modelled as the product of its trigrams).

�e trade-o� between larger N (better approximation of true probability) and lower
N (better estimates from training material) can be improved upon by combining

5If rules are unweighted, all sequences allowed by the rules are assigned the same probability.

92

5.1 Automatic Speech Recognition in a Nutshell

higher-order and lower-order N-gram models. �e inaccurate estimation of higher-
order models can be smoothed by distributing some probability mass to N-grams that
have never occurred in the training data (but might still occur in the application), by
interpolating higher N-grams with lower N-grams, or backing o� to lower N-grams
if the higher N-gram never occurred. �us N-gram models typically assign some
(very low) probability to any word sequence, avoiding the zero probability problems
of grammars. �e generic term Statistical Language Model (SLM) is o�en used as a
synonym for N-gram models.

5.1.1.2 The Pronunciation Model

�e pronunciation model’s task is to determine the sequence of phonemes that are
used to pronounce a word sequence. In the simplest case, the pronunciation model
just performs a dictionary lookup for each word’s pronunciation. In more complex
models, post-lexical phonological processes can be used to model elision e�ects that
may change phonemization at word boundaries.
Going beyond dictionary lookup, statistical models (e. g. joint-sequence models,

Bisani and Ney 2008) trained from data can be used to determine the most likely
phoneme sequence. Such models that build an abstraction over the training data can
provide phoneme sequences for words that were never seen in the training process.
In practice, this reduces the model’s interdependence with the language model and as
a result reduces development e�ort.
Statistical models as well as dictionaries may provide several likely pronunciations

for the same word sequence. In this case, the ASR can include this information into
the search for the most likely word sequence by opening up alternative paths in the
search space. While alternatives allow for better pronunciationmatching, this may not
actually translate into better recognition results as probability mass gets distributed
among more hypotheses.

5.1.1.3 Acoustic Modelling in the ASR Frontend

�e task of the acoustic model proper is to estimate P(O∣Ph), that is, to capture how
well an acoustic observationmatches a given phoneme sequence. �is task can be split
into two parts: the �rst is to bring the acoustic waveform into an appropriate form that
focuses on relevant and disregards irrelevant signal variation and will be described in
this subsection. �e second is to actually make use of the observation sequence for
speech recognition. �at part is tightly integrated with the HMMmethodology and
will be explained in the next subsection.

93

5 Incremental Speech Recognition

�e acoustic speech waveform is continuous6 but for speech recognition with
HMMs it is modelled as a sequence of observation frames (O = o1, o2, o3, . . . , on),
equally distributed in time, o�en every 10milliseconds. During digitization, speech
audio is commonly sampled at 16 kHz and quantized using 16 bit samples. �us, each
frame may be one out of a total of 160 × 216 ≈ 10million distinct observations that are
possible for every 10ms of audio. Given the fact that languages distinguish no more
than 50 phonemes (Ternes 1999), the huge amount of redundancy in the speech signal
should be clear.7 �e goal of acoustic modelling in the speech recognizer’s frontend
is to reduce this redundancy. �e methods used are based on (simpli�ed) phonetic
knowledge about human speech perception and production.
Human auditory perception is characterized by a focus on spectral characteristics

of the signal, that is, on analyzing the subfrequencies contained in the signal. By and
large, the auditory organ measures the peaks of the signal envelope as well as the
fundamental frequency of the speech signal (Taylor 2009). At the same time it is robust
against noise and di�erent loudness conditions, and exhibits some non-linearities in
the frequency domain and the signal power.
Human speech production can be described by the source-�lter model in which the

vocal folds in the glottis are the source of a primary sound (somewhat resembling an
impulse train for voiced, and white noise for unvoiced speech) which then passes the
vocal tract, which acts as a resonator and �lters out frequency ranges and ampli�es
others (the formants) depending on its setting (Pétursson and Neppert 1996).�e
so� tissue in the vocal tract causes resonance to show mostly the attenuation of
frequencies, and very little ampli�cation. �is is especially true for higher frequencies
which are attenuated more strongly, resulting in a phenomenon called spectral tilt
of the signal. When articulating, the vocal tract’s setting is adjusted (and with it the
resonance frequencies change) so as to produce the di�erent speech sounds which
are marked by their characteristic signal envelopes. Orthogonally to phonation in the
vocal tract, the fundamental frequency of the primary signal determines intonation
(or more speci�cally, pitch) and does not a�ect the identity of the articulated speech
sound. �e result is a signal that is quasi-stationary, i. e. it is stationary in the short-
term (there is little spectral change between adjacent frames) and slowly changes over
time (as adapting the vocal tract is relatively slow).8
�e methods to model the speech signal in practical systems that we will describe

below together de�nemel frequency-adjusted cepstral coe�cients (MFCCs, Mermel-
stein 1976), which are the features used in the speech recognition system described

6At least before digital sampling in the sound card.
7Although we might need to model the transitions between phonemes (and there are on the order

of 502 transitions) – we will come to that further below.
8�eburst phases of plosive sounds are not quasi-stationary and as a result are somewhat imprecisely

modelled by the ASR frontend.

94

5.1 Automatic Speech Recognition in a Nutshell

below (and used in many state-of-the-art systems). MFCCs use a technique called
cepstral analysis which can be used to deconvolve (i. e. separate) the fundamental
frequency of the signal (caused by the source of the source-�lter model) from the
spectral envelope of the signal (caused by the �lter). In cepstral analysis, the signal is
Fourier transformed into the frequency domain, logarithmized and Fourier trans-
formed one more time (hence the name of the technique, the reverse of spectral).
�e parameters describing the source (mostly its fundamental frequency) are now
clearly separated from those describing the �lter parameters (determining the signal
envelope). �is seemingly arbitrary procedure works because taking the logarithm in
the spectral domain (where the convolution of signals is reduced to a multiplication
of spectra) further reduces convolution to addition and allows deconvolution with the
second (re-)transformation (Oppenheim and Schafer 2004). (Also, this only works
for signals which can be su�ciently well described by the source-�lter model but not
for arbitrary signals.)
To model spectral tilt and the higher auditory sensitivity to higher frequencies,

the signal is �rst pre-emphasized, that is, �ltered to enhance higher frequencies. As
a next step, the speech signal is reduced into a sequence of observation frames by
windowing with the window being advanced by 10ms between observations (Taylor
2009). Most commonly, the window size is slightly larger (e. g. 25.6ms), resulting in
an overlap, and uses a Hamming window to reduce the introduction of windowing
artifacts into the frequency analysis.
Each window is transformed into the frequency domain using the Fourier transfor-

mation. �e phase information is discarded by ignoring the imaginary components
of all coe�cients. Auditory determination and discrimination of frequencies is linear
only up to a frequency of about 500Hz and pitch is perceived log-linearly with lower
spectral resolution above. �is relation is captured by theMel scale and the ASR uses
band-pass �ltering to aggregate the energy in di�erent frequencies into consecutively
wider and broader spaced frequency bins, commonly 40 bins for 16 kHz (Mermelstein
1976).
�ese binned frequencies are then logarithmized and reverse-transformed into the

cepstral domain. Overall signal power and the �rst twelve cepstral coe�cients that
together describe the signal envelope are then combined into theMFCC vector. �e
remaining cepstral coe�cients that cover irrelevant details of the signal (including
the fundamental frequency) are discarded.
Finally, to �lter out additive noise from theMFCCs and to focus our features on

deviations rather than means, each coe�cient is normalized by subtracting its global
mean in a process called cepstral mean normalization.9

9Of course, in incremental processing we do not know the global mean because the signal’s future
is still unknown. However, the global mean can be approximated from a sliding window that captures

95

5 Incremental Speech Recognition

Articulation changes relatively slowly (compared to the windowing frequency)
and the transitions between speech sounds are just as important as the stationary
phases.10 �is somewhat breaks the short-term stationarity assumption from above.
To explicitly model gradual change, the delta between adjacent frames’ parameters
is used, as well as the the delta of deltas, for change and acceleration, respectively,
resulting in a total of 39 parameters per feature frame.
While MFCCs reduce the original data and help to ‘sharpen’ the signal in a way

suitable for recognizing speech, they still allow many degrees of freedom. To reduce
computational needs, quantization can be used to reduce the MFCCs to a limited
number of, say, 256 or 1024 di�erent observation classes. Recognition would then
proceed in determining the phonemes corresponding to the sequence of classes.
More precise but much more computing intense (and requiring more training data

for reliable estimation) is to calculate the multidimensional Gaussian distributions
that best describe all occurrences of each phoneme (or parts thereof), which can be
represented by means and covariance matrices. To reduce model complexity, the
covariance matrix is o�en assumed to be diagonal (i. e. features are assumed to be
independent) which approximately holds forMFCCs (Taylor 2009), resulting in two
vectors µ and σ to describe the distribution. �e Gaussian distributions can then be
used in continuous Hidden Markov Models. Not all distributions are well described
by a Gaussian. Mixtures of Gaussians are uesd to describe such distributions that
overlay several Gaussian distributions (o�en 4 or 8, also called Gaussian Mixture
Model, GMM).

�e context of a phoneme determines its acoustic realization due to coarticulation
between speech sounds. Coarticulation can be modelled by developing di�erent mod-
els for each phone’s preceding and following context resulting in about 503 = 125000
triphones.11 To counter this increase in search space, state-tying can be used where
di�erent triphones refer back to the same Gaussian distributions, to unify, e. g. the
states of [a] following [b], and [m] (which share certain phonological characteristics).
Whether to tie states and how is determined during training, usually with decision
trees that build on manually de�ned phonological features.

5.1.2 The Speech Recognizer

We have described above how to model word sequences with grammars or N-gram
models, themapping ofwords to phones, and how tomodel speech audio as a sequence

the past resulting in a long-term mean subtraction. �is has the additional advantage of adapting to
slowly changing additive noise.

10In fact, diphthongs, like [aU
“

] are characterized by not being stationary at all but through a transition
that instead features relatively constant change.

11Of course, not all of the possible combinations will be realized.

96

5.1 Automatic Speech Recognition in a Nutshell

a b c a b c a b c

initial

state
state 1

1.0

.8 .1 .1

.6

state 2
.4

.4 .5 .1

.4

state 3
.6

.2 .1 .7

.2

final

state

.8

Figure 5.1: A discrete HMM with three emitting states (in addition an initial state, and
a �nal state), and three discrete, emittable symbols (boxes a, b, and c) with
varying emission probabilities for each state.

of observation parameters. �is subsection now describes the speech recognition
process proper, by �rst describing the stochastic modelling technique used in speech
recognition, HiddenMarkovModels, and then describing how the recognition process
is operationalized in the decoding algorithm.

5.1.2.1 Hidden Markov Models

Formally, Hidden Markov Models are state-based stochastic, productive models (Ra-
biner and Juang 1993, Ch. 6.3.3) and are comprised of:

• a set S of discrete states that the model is in at any given time step includ-
ing speci�c start and end states. Under the Markov assumption, the current
state fully encapsulates the model’s history. In practical LVCSR systems, each
phoneme is modelled by three states: one for the transition from the preceding
phoneme, one for the stable phase of the phoneme, and a third one for the
transition to the next phoneme.

• a matrixA to describe state-transition probabilities between timesteps. Under
the Markov assumption,A is independent of time and previously visited states.
Most o�en, the topology of the HMM is limited to a le�-to-right model where
only self-transition (i. e. staying in the same state) or going to the next state
is allowed, as in Figure 5.1. �is limitation simpli�es learning the transition
probabilities from data and can be made because speech unfolds over time and
does not normally reverse or jump around.

• a setM of observation symbols (for discrete HMMs), and
• an observation probability function B ∶ S ×M ↦ [0..1]. For discrete HMMs,
this can be described by a single matrix. For continuous-density HMMs, the
probability distribution ismodelled by a Gaussian distribution (orGMM) which

97

5 Incremental Speech Recognition

can be computed from (multidimensional) µ- and σ-matrices, as described in
the previous subsection.

�e denotation of HMMs as hidden stems from it being a two-level stochastic
process with the higher level (the states) not being directly observable (i. e. hidden).
O�en, one observation may be emitted (or, seen in reverse, be accepted) by multiple
states12 and the most probable state for an observation can only be determined from
the whole sequence of observations (Rabiner and Juang 1993, p. 326). �is nicely
models the context-dependent nature of the speech signal.
�e HMM in Figure 5.1 does not leave any options: all states have to be passed in

order to reach the �nal state. Such an HMM can be useful to �nd the best alignment
of an observation to the given state sequence, and to calculate the overall proba-
bility of the observation being emitted by the HMM. Also, such HMMs are used to
re-estimate emission and transition probabilities given an alignment: the iterative
training process for HMMs re-aligns and re-estimates repeatedly until matching of
the data does not improve anymore. Finally, a non-branching HMM can be used to
generate an observation sequence based on a given state sequence (a capability that
will be explained and put to work in Chapter 7.2.2).

�e HMM in Figure 5.2, in contrast, contains a branch that allows two paths from
the initial to �nal states and the most likely state sequence in this model depends on
the observation. For example, the likelihood of the observation sequence aabba is
more likely to be emitted by a path through the HMM that passes along state 2, while
aaccc is much more likely to be emitted if state 3 is passed instead.13
For speech recognition, we build a much larger branching HMM that accepts all

the word sequences possible in L. An incoming observation sequence can then be
matched against all possible paths in that HMM and the most likely path is the best
estimate Ŵ for the word sequence spoken. �e details of an e�cient algorithm for
the matching task will be described in the next subsection.

HMMs for large vocabulary continuous speech recognition as described in Subsec-
tion 5.1.1 have a somewhat more complex structure than in Figure 5.2. Speci�cally,
we distinguish between normal emitting and special non-emitting states. Groups of
emitting states (usually three) relate to phonemes (or triphone contexts as described
above) and are chained together (with transition probability 1.0) to form a word as
speci�ed by the pronunciation model. �e language model is then used to combine
these chains into the branching model and non-emitting states are used to model

12For continuous-density models employing Gaussian distributions, any observation can be emitted
by any state, albeit with radically di�erent probabilities.

13�e best alignment for aabba via states 1 and 2 is 11222 with a probability of 1.0 × .8 × .5 × .8 × .3 ×
.5 × .4 × .5 × .4 × .4 × .6 = .0009216, via states 1 and 3 the best alignment is 11113 with a probability of
1.0 × .8 × .5 × .8 × .5 × .1 × .5 × .1 × .2 × .2 × .6 = .0000192. For aaccc the probabilities are .0000144 and
.002107392 for the best alignments.

98

5.1 Automatic Speech Recognition in a Nutshell

initial
state

state 1
1.0

.1

.5

.3

a b c

.4 .5 .1

.4

state 2
.6

final
state

a b c

.2 .1 .7

.4

state 3

.2

a b c

.8 .1

.6

final
state

Figure 5.2: A branching HMM that emits di�erent ‘types’ of observation sequences,
such as aabba, or aaccc.

the language model probabilities via transition weights. Depending on the type of
language model used and the search strategy employed (see below), these word states
may either precede or succeed their phoneme states.

5.1.2.2 The Decoding Algorithm

Recalling the task formulated in Equation 5.5, we want to �nd the sequence of words
from L with the highest probability, using the argmax function. A naïve imple-
mentation could build an HMM that completely describes L, generate all possible
alignments of the observation sequence to emitting HMM states, compute the respec-
tive probabilities (by multiplying transition and emission probabilities), pick the best
alignment, and infer the words from the (non-emitting) states.
�ere are several problems with the naïve approach: the �rst is excessive recom-

putation as many of the alignments share common parts. Viterbi decoding avoids
these recomputations through the use of dynamic programming (and also solves
the problem of �nding the best alignment along the way). In dynamic programming,
all hypotheses (i. e. word sequences) are constructed in parallel, and step-by-step,
using all the results from the last step for the next. In plain Viterbi decoding, given
an observation of length T and an HMM with S states, we construct a matrix v of
size S × T . Additionally, a zeroth column is �lled with all zeros, and a single 1 for the
initial state. We then �ll the matrix column-by-column, following the rule:

v[s, t] =
S

max
s′=1

v[s′, t − 1] ∗ as′,s ∗ bs(ot) (5.8)

99

5 Incremental Speech Recognition

with a and b the transition and observation costs given by the HMM. Using the
maximum, we discard all but the most likely path to a state under the rationale that
the globally optimal alignment must also be locally optimal. Beyond the probabilities
themselves, we store the state s′ which the maximum function selected in each step
in a separate backpointer matrix. Once the matrices are �lled, we can trace back the
optimal state sequence via the backpointer matrix, starting at the �nal state (Jurafsky
and Martin 2009) with the highest probability of being reached.
We should note that the Viterbi algorithm does not in fact �nd the best word

sequence but the word sequence that corresponds to the best alignment. �ese
may in fact di�er as the probability of a word sequence should be summed over
all possible alignments which, however, are prohibitively expensive to compute. In
most cases the best-matching alignment’s probability dominates all other alignments’
probabilities, making theViterbi assumption useful. �e use of theViterbi algorithm is
also the reason why adding multiple pronunciations to a word may in fact deteriorate
recognition performance, as mentioned above.
�e complete Viterbi algorithm is guaranteed to �nd the optimal state sequence

but its runtime complexity is O(S2T). For large state spaces this quickly becomes
infeasible. Additionally, much of the computation is concerned with sequences that
are unlikely to turn out to be optimal as they are far less likely than the current best
hypothesis. �e token-pass algorithm can be used to re-conceptualize the search
problem and allows easy implementation of a beam-search strategy, which at every
time-step focuses on only the X best instead of all possible hypotheses.
In token passing (Young, Russell, and�ornton 1989), tokens are used as pointers

onto states in theHMMnetwork. Each token contains a back-pointer to it’s predecessor
and the associated hypothesis’ score, possibly split into language model and acoustic
model scores. Starting with one token in the initial state of the HMM, it generates
tokens for all successor states (discarding all but the best token per state as in the
Viterbi maximum selection). Tokens are then sorted by score and all but the best X
tokens can be discarded, or all tokens with a score too far from the best (or both of
these pruning rules can be applied). By discarding unlikely tokens, less computations
are spent on unlikely hypotheses and memory requirements are reduced. A�er
pruning, the algorithm returns to deriving next possible states and calculating state
probabilities given the observed data frame. �is loop continues until all frames have
been consumed.
Additionally, token passing supports ‘in�nite’ search spaces, by dynamically con-

structing theHMM network. Dynamic construction of theHMM network is especially
important for cross-word triphone acoustic models, and for long-range (more than
bigram) N-gram models (Odell et al. 1994) which would both increase static layouts
by orders of magnitude. A technique for dynamicHMM network construction is used
in the LexTree decoding approach (Odell et al. 1994). A lextree (also called ‘trie’) is a

100

5.1 Automatic Speech Recognition in a Nutshell

/f/

/oʊ/

/ʌ/

/n/ phone

/n/

/dʒ/

/i/

fun

fudge

funny

Figure 5.3: A pronunciation lextree for the words: phone, fun, funny, fudge.

method to store the ASR dictionary’s pronunciations in a compact form by folding
pre�xes together and attaching the word labels as leaves. A small example lextree
is shown in Figure 5.3. Lextree decoding starts with a copy of the lextree as initial
HMM network and whenever a token reaches a word node, a new copy of the lextree
is attached to it. Even though many copies are created, this is much more e�cient
than constructing the full static network ahead of time, especially because most paths
will be pruned quickly. In lextree decoding, the word token must be attached to the
end of the tree (once all corresponding phonemes have been passed). �us, the word’s
language model score remains unavailable and is approximated by the maximum
score of all words still accessible on the tree (slightly under-restricting the search
space).

5.1.3 Evaluating Speech Recognition

Speech recognition aims to optimize P(Ŵ) and the easiest is to measure its success at
doing so by counting the times that the utterance was correctly recognized. �is is
called sentence error rate (SER).

SER, however, ignores the fact that a speech recognizer’s task is to recognize a
sequence of words, and there may be di�erent degrees of error in a sequence. In view
of SER, being almost correct is as wrong as being totally wrong, whereas we would
like to value partial correctness of the sequence.
In contrast, word error rate (WER) evaluates the proportion of correctly recognized

words in the recognized sequence by counting the number of mis-recognized words

101

5 Incremental Speech Recognition

in terms of wrongly inserted words (#ins), substituted words (#subst), and omitted
words (#del). It is computed as:

WER =
#ins + #subst + #del

#words in transcript
× 100% (5.9)

Of course, as the recognizer may wrongly insert and delete more words than are
actually in the transcript,WER is not bound to 100%.
Two approaches could be taken for an even more detailed evaluation: (a) the

confusion of similar sounding words can be punished less hard (as intuitively, the
ASR’s error is less grave), or (b) only those errors that really matter to the application
are counted.
�is latter approach is computed by the concept error rate (CER, Boros et al. 1996)

which, instead of focusing on the inserted/deleted/substituted words only regards
the concepts relevant to further processing. While more meaningful for a speci�c
application at hand, CER cannot be computed in isolation without knowing what the
recognition task is going to be, which counters the idea of a modular system.

5.1.4 Re®nements

�e token-pass algorithm does not only �nd the one best recognition result but the
token list can also be used as an ordered list of next-best candidates. �e decision
making by the recognizer does not necessarily re�ect the right quality criteria and in
practice it does happen that more appropriate hypotheses are lower ranked than the
top-ranked hypothesis (e. g. Rayner et al. 1994). Even though the lower candidates
are considered less likely by the recognizer, the n-best list can be useful if additional
information is considered and the list is re-ranked accordingly. N-best lists have been
shown to be valuable in SDSs (in the non-incremental case) as they allow to revaluate
hypotheses given higher-level information (Chotimongkol and Rudnicky 2001; Lee,
Jung, and Lee 2008; Purver, Ratiu, and Cavedon 2006; Williams 2008).

Related to n-best list processing, lattice generation is the process of folding common
parts of hypotheses in the n-best list which results in far less processing overhead
when considering all hypotheses.

Con�dence measures give an account of how con�dent an ASR is about its results,
either on a per-utterance or even a per-word basis. Con�dence measures can be
computed from lattices in a second pass (which is somewhat incompatible with
incremental processing), or be computed locally and frame-synchronously (Razik
et al. 2008, 2011). Word con�dences are not considered in the remainder of the thesis,
even though they could o�er additional value.

102

5.1 Automatic Speech Recognition in a Nutshell

We limited our discussion of decoding algorithms to one-pass decoding, as the
alternative,multi-pass decoding is of little use for incremental systems. Multi-pass
decoding uses an initial imprecise recognition result to adapt following, more com-
plex models (e. g. to speaker characteristics such as dialect), possibly repeating this
process several times. �is leads to better recognition results but only ever generates
�nal results when all speech data has been processed several times. (However, see
Section 5.2 which reports work by Imai et al. (2000) on incremental progressive
multi-pass decoding.)
Standard ASR technology ignores prosody; this author has helped to demonstrate

that prosody can be incorporated in the language model (following the intuition that a
word’s likelihood of being spoken correlates with the prosodic context) to improveASR
results (Ward, Vega, and Baumann 2012). However, incorporating prosody increases
computational demand, as the languagemodel’s output is nomore a priori information
but has to be re-computed for every prosodic context. We hence ignore these results
in the remainder of the thesis.

5.1.5 The Sphinx-4 Speech Recognizer

�e Sphinx speech recognition engines are a series of open-source speech recognizers
developed at Carnegie Mellon University since 1988 (Huang et al. 1992; Lee, Hon,
and Reddy 1990; Placeway et al. 1997; Singh 2004). Apart from Sphinx-4, which we
use, other still actively developed members in the Sphinx family are Sphinx-3 (the
slowest but potentially most accurate recognizer), Pocketsphinx (based on Sphinx-
2 and meant to be used on small devices where processing power is limited), and
SphinxTrain (a program collection to train acoustic models for all members of the
Sphinx family).
Sphinx-4 has been developed since 2003 (Lamere et al. 2003) in collaboration

with Sun Microsystems who were interested in showing that the Java programming
language could also be used to build computing-intensive research systems. (At the
time, Java was still avoided in the research community, partly because the hotspot
compiler was missing in the �rst Java releases and all code was interpreted.)
Being designed by ‘real programmers’ (as opposed to ingenious scientists) and

with modularity, extensibility, con�gurability, and �exibility in mind, Sphinx-4 is the
best-engineered piece of scienti�c so�ware the present author has seen in his career.
Sphinx-4 has had a great share in making the work presented in this thesis possible,
and fun.

103

5 Incremental Speech Recognition

5.2 Incrementalizing Speech Recognition

�e task of incremental speech recognition is to recognize words in speech as soon as
they are spoken (or at least with as little delay as possible).
�e token-pass algorithm forms the basis for our incremental speech recognizer.

As developed in Subsection 5.1.2.2 above, it is a time-synchronous algorithm, that
is, it builds all structure necessary for �nding the speech recognition result while
consuming its data. In other words, the input side of the algorithm is incremental
as-is.
At runtime, the token-pass algorithm keeps a list of all partial results that may later

be extended to become the overall best hypothesis (as determined by acoustic and
language models). However, it is not trivial to determine the one partial result that
will later become the pre�x of the overall result. Di�erent approaches have been used
in the literature to determine these pre�xes: Brown et al. (1982) searched the token
history for a pre�x that is common to all active tokens, that is, �nds the ‘undisputed’
portion of the utterance so far. As these partial results are undisputed (also called
‘immortal’ by Selfridge et al. 2011), no additional errors can be introduced compared
to non-incremental recognition, meeting the yieldingness criterion for incremental
processing (cmp. De�nition 3.3). However, the undisputed pre�x may lag behind
signi�cantly (or even remain empty if the �rst word remains disputed until the end),
resulting in long delays of this strategy.
Wachsmuth, Fink, and Sagerer (1998) evaluate the best-ranked hypothesis at time

t only up to t − ∆ (e�ectively leaving a �xed right context of ∆, cmp. Section 5.5)
and considered the words contained in this pre�x as �nal and unchangeable. Seward
(2003) uses the same strategy for incremental phoneme recognition and �nd the
results of the incremental strategy almost identical to non-incremental processing
using a ∆ of 150ms. Imai et al. (2000); Imai et al. (2003) use a progressive two-pass
setup to counter the restrictions of their simple, bigram-based �rst-pass decoder.
In their setup, some portion of the �rst pass is unfolded into a lattice which is then
passed to the second pass. If two consecutive hypotheses of the second pass match,
then all but the M most recent words are considered as decided upon and passed on
as output. �ese latter techniques are similar as their �nal output may di�er from the
non-incremental output (they are not yielding) and hurt recognition performance.
�e approach taken here and �rst presented in (Baumann, Atterer, and Schlangen

2009) can be seen as an extension of the above approaches which however allows
to change previously output hypotheses, by exploiting the �exibility introduced by
the IUmodel. �e right context technique in Section 5.5 is similar to (Wachsmuth,
Fink, and Sagerer 1998), and the smoothing technique generalizes the idea of Imai
et al. (2000) to consider the similarity of consecutive hypotheses. More recently,
Selfridge et al. (2011) and McGraw and Gruenstein (2012) have extended the idea

104

5.2 Incrementalizing Speech Recognition

of changing hypotheses, which holds a binary notion of correctness, to computing
stability estimates for partial hypotheses.

5.2.1 The INPROTK Module for Incremental Rich Speech Recognition

�e token-pass algorithm makes the current results available as a list of tokens a�er
every frame, sorted by recognition score. Sphinx-4 makes it especially easy to acquire
intermediate hypotheses, as there exists an interface (ResultListener) for exactly this
purpose which can be con�gured to be called a�er every frame consumed by the
decoder. When extracting the token for the ‘best’ hypothesis, there are two possibil-
ities: (a) the token is in a �nal state of the HMM and hence speci�es an hypothesis
that does not require more speech to follow, or (b) the token is in a non-�nal state
of the HMM and more speech must follow. For incremental recognition, all but the
very last recognition result will later turn out to have been among non-�nal states.
However, a major goal of incremental processing is to obtain information about the
full utterance as soon as possible and recognition for the full utterance will end in a
�nal state. Additionally, words only become known in the search graph when all the
corresponding emitting states (phonemes) have been passed. O�en, a �nal hypothesis
with somewhat shortened phonemes for the last word will become available early,
allowing the incremental recognizer to come up with an hypothesis for the word
before the word is objectively over. �erefore, InproTK uses the best token that
is in a �nal state, and only backs o� to the token in the best non-�nal state if no
token in a �nal state is available. It should be noted that this choice does not have
a tremendous impact as n-gram models (which InproTK has predominantly used
for speech recognition) tend to allow an utterance ending a�er any word (via LM
smoothing). A detailed investigation of whether �nal or non-�nal state tokens lead
to better results (and what the trade-o�s are) has not yet been undertaken but would
certainly be valuable, also because this choice is neglected in the related literature on
incremental speech recognition cited above.
Once a best token has been selected, the list of words and phonemes along the

token path can be (trivially) extracted and a word hypothesis (as a list of WordIUs) can
be generated and words can be augmented with phoneme information (SegmentIUs) in
their grounded-in links, as word and corresponding phoneme states are interleaved
on the token path. However, the implementation is somewhat complicated by the
fact that the ordering (and implemented class) of phoneme and word states in the
search graph depends on the decoding strategy and type of language model (SLM
or grammar) used for recognition. (For LexTree decoding with SLMs, phonemes
precede their assigned words, whereas words precede their phonemes for grammar-
based decoding.) InproTK supports all orderings and hence all recognition modes
of Sphinx-4 can be used incrementally.

105

5 Incremental Speech Recognition

�us, at every time step, a best hypothesis (hypt) is available in its full form. Edit
messages (which are required for inter-module communication in InproTK) are
computed from these by the di� operation de�ned in De�nition 3.14. �e computa-
tional cost of delti�cation increases with hypothesis length and the implementation
could be made more e�cient by caching previous best tokens and their associated
hypotheses and only trace back the token network until a previously matched token is
found. However, utterances are relatively short in practice so this is only of theoretical
interest.
Incremental processing in the IUmodel using incremental modules relies on edits

between successive hypotheses and edits should come as rarely as possible to avoid
re-computation by consecutive modules. Very o�en, consecutive hypotheses do not
di�er in words but only in the attribution of signal frames to phoneme segments.
In these cases, the corresponding words are not changed (and no updates are sent
via inter-module communication) but only the timings in associated SegmentIUs are
updated.
In addition to features required for speech recognition, InproTK adds a pitch

detector to the Sphinx-4 acoustic processing pipeline so that pitch marks are available
as one of the tracks in the BaseData store (cmp. Chapter 4.1).
�e iSR component of InproTK structures words into syllables by extending the

Sphinx pronunciation dictionary to allow for syllable boundaries. During recognition,
syllable boundaries are recovered from the dictionary and SyllableIUs are introduced
as a separate layer between words and phonemes. (In other words, WordIUs only indi-
rectly ground in SegmentIUs, via SyllableIUs). �is functionality is meant to be useful
(together with pitch information from the base data store) for prosodic analysis of
words, e. g. to support lexical disambiguation of homophones, or for phrase boundary
detection (cmp. Chapter 6.1).
To conclude, the raw iSR component of InproTK outputs hierarchical IU net-

works up to the word level with syllables and phoneme-level segments below. �e
speech recognizer’s decoding algorithm and its search strategy are handled as a black
box regarding their hypothesis generation. All the component requires is that the
recognizer provides a best hypothesis (for some de�nition of best) a�er every time
step, a requirement that is met by the token-pass algorithm. No optimizations for
incremental output on the search per se have been performed. A more informed
selection of best tokens, or a radically di�erent search method (e. g. A* search, Kenny
et al. 1991) are candidates for such endeavours.
�e performance of the InproTK iSR component will be evaluated in Section 5.4,

following the presentation of the evaluation tool for this purpose in the next section.
As mentioned above, it is important to keep the amount of editing low, and Section
5.5 presents and evaluates the methods for edit reduction implemented in the iSR
component.

106

5.3 INTELIDA: A Workbench for Evaluating iSR

5.3 INTELIDA: A Workbench for Evaluating iSR

�is section presents Intelida, the workbench for Incremental timing evaluation
of linguistic data implemented in the context of this thesis. Intelida is written in
the Perl programming language and consists of a library to handle incremental and
non-incremental timed data in several formats, two generic command-line programs
for incremental and non-incremental data, respectively, and an interactive graphical
user interface. Additionally, the author has used the Intelida library in many short
scripts for corpus conversion, validation, extraction and measuring tasks.

5.3.1 The Library

�e Intelida programming library de�nes classes that provide an object-oriented
interface to labels, alignments of labels, and collections of alignments, as they are found
in the data models of many annotation tools, and which can be used to non-incre-
mentally describe linguistic corpus data. Intelida reads and writes non-incremental
data in common formats (Praat’s TextGrids, Boersma 2002; as well as Wavesurfer
alignments, Sjölander and Beskow 2000) to allow for easy exchange with external
tools.
Intelida’s main feature is support for incremental data, a feature that is not found

in standard tools. �e focus of Intelida is on the post-hoc analysis of incremental
processing results rather than on the e�cient handling of incrementally evolving
hypotheses as in InproTK. Correspondingly, the data models used di�er between the
two: temporal change between hypotheses (which is only implicit in the data model
of InproTK through changes to the IU network) is made explicit by representing and
storing all hypotheses at every timestep and including their full timing information,
resulting in a high degree of redundancy of information. In contrast to InproTK
and to simplify data storage, no links between related units are kept and units are
not typed – relations between di�erent kinds of data could only be recovered via
comparison of timing information. �is is not a shortcoming, however, as Intelida
is meant mainly for the analysis of incremental data of one type at a time (mostly
timing analyses) whereas the task of InproTK is the production and manipulation of
incremental data of multiple types simultaneously.
For incremental analysis, Intelida combines individual aligned hypotheses to

alignment sequences that directly implement operations to calculate incremental
evaluation metrics as presented in Chapter 3.3.2. Alignment sequences apply to one-
best processing only and the computation of evaluation metrics for the n-best case
di�ers as will be further detailed in Section 5.4.2 below. To support the analysis of
n-best incremental data, Intelida supports n-best alignment sequences that combine
sequences of n-best lists of alignments.

107

5 Incremental Speech Recognition

Figure 5.4: A screenshot showing the main Intelida evaluation window in the front
and two analysis windows in the back.

Incremental data is stored in a simple, text-based format: sequences of alignments
are delimited by empty lines; each alignment starts with a timestamp at which it is
valid and the content of the alignment is stored in the same (tabulator-delimited)
format as used by Wavesurfer. In the n-best case, multiple alignments share the same
timestamp.

5.3.2 Interactive Tools

�e Intelida interactive tools can be readily used to perform incremental perfor-
mance evaluations for timed linguistic data, especially iSR output.

Graphical Evaluation Tool �e graphical evaluation tool allows to evaluate perfor-
mance metrics on a collection of �les that each describe the incremental output of an
incremental processor on some evaluation data. In the context of this thesis, the data
to be analyzed was incremental speech recognition output from the InproTK iSR
component resulting from recognizing speech in a collection of audio �les. For large
collections, reading, parsing and pre-processing of input �les can be extremely time-
consuming; therefore, the tool supports a caching mechanism to speed up loading of
previously analysed collections.

108

5.3 INTELIDA: A Workbench for Evaluating iSR

�e analysis window has two tabs that relate to incremental performance, one
presenting timing metrics and another for diachronic analysis. Both tabs are shown
in Figure 5.4 (multiple analysis windows can be opened at a time). Graphs visualizing
the performance metrics are plotted by calling Gnuplot (Janert 2009). �e Gnuplot
code used to plot the graph can be copied to the system clipboard by right-clicking the
plot (as can be seen in Figure 5.4). �is highly useful feature enables re�nements and
extensions to the plots via external editors and also helps to �nd small di�erences that
cannot be exactly determined in the graphical representation. Most of the analyses of
incremental behaviour presented in this thesis have been produced in this way, by
using Intelida’s graphical evaluation tool.
�e tool also supports the incremental optimizationmethods outlined in Section 5.5

(in fact, they were �rst implemented in Intelida before being ported to InproTK)
which allows the easy exploration of their behaviour on a given corpus. For example,
in Figure 5.4, the timing analysis is performed for smoothing with factor 7, as selected
in the main window.
�e GUI code of the tool is based on GTK and hence the graphical tool works out

of the box on Linux only and is, unfortunately, hard to set up on other platforms.

Command-Line Interfaces Two command-line interface programs, TGtool and
INtool for non-incremental corpus data and incremental evaluation data, respectively,
complement Intelida’s evaluation tool. Both support a variety of commands to load,
inspect, organize, view, edit, and save input �les in various formats, and feature a
built-in help system.
Both can also be used o�ine in scripts, by passing (multiple) commands as (mul-

tiple) arguments on the command line, or by piping commands into it, which is
helpful to rework collections of �les. Finally, both programs are able to pass on data
to TEDview, a tool for presenting incremental data that is described next.

TEDview TEDview (Malsburg, Baumann, and Schlangen 2009) is a graphical viewer
for incremental data that was developed in parallel to Intelida but is not an integral
or integrated part of the evaluation toolbox.
�e additional value of TEDview over standard alignment viewers (such as Wave-

surfer or Praat) is the capability of presenting incremental data. For each type of data
(track) that is visualized, a full alignment sequence can be visualized by showing
the alignment that is valid at a point in time. During playback, the currently visible
alignment changes, always showing the state of a�airs (e. g. the content encoded in
the IU network) at the corresponding point in time. �us, incrementally changing
hypotheses and their interrelations can be easily inspected and understood, much

109

5 Incremental Speech Recognition

easier than by looking at alignment sequence �les. Of course, non-incremental data
can also be visualized.

5.4 Evaluation of Basic Incremental Speech Recognition

�is section reports and discusses the incremental performance of the raw InproTK
iSR component. We �rst describe the corpora used in the experiments and give results
for a basic setting, discuss these, including possible variations of the metrics employed
and compare between corpora. Subsection 5.4.1 explores the stability of results given a
systematic variation of speech recognizer performance and Subsection 5.4.2 explores
the in�uence of considering n-best speech recognition results.
�ree corpora are used in the experiments: OpenPento acted,OpenPentoWOZ, and

Verbmobil. �e �rst corpus is a small, relatively ad-hoc collection of utterances from
the Pentomino domain,14 mostly focusing on puzzle piece description and selection
and resembling actual utterances from study subjects interacting in a Pentomino
setting. �e utterances were re-recorded by two speakers in an ‘acted’ way, trying
to avoid the character of read speech and instead resulting in semi-spontaneously
uttered speech (Baumann, Atterer, and Schlangen 2009).
�e second corpus was collected in a Wizard-of-Oz setting of the Pentomino do-

main again focusing on puzzle piece description and selection and contains utterances
from 9 di�erent speakers (Baumann et al. 2009).
Finally, Verbmobil is a publically available dialogue corpus in an appointment

scheduling domain (Jekat, Scheer, and Schultz 1997). For this much larger corpus,
only a small portion was used for testing, as the speech recognizer’s acoustic and
language models were trained on the remainder of the corpus. �e speech recognizer
for the two OpenPento corpora used models trained on human-human dialogue in
the Pentomino domain (Fernández et al. 2006), as well as acoustic data from the Kiel
Corpora of Read and Spontaneous Speech (IPDS 1994).
For comparison, some corpus statistics are presented in Table 5.1. As can be seen in

the table, corpora mainly di�er in size and also in complexity, with OpenPento acted
being the least and Verbmobil being the most complex. (Complexity is, among other
factors, inherent in the vocabulary sizes.)
Table 5.1 also shows the speech recognizers’ (non-incremental) word error rate

(WER) which varies radically between the setups. �e (low)WER for the OpenPento

14�e Pentomino domain is a puzzle game with the 12 geometrical shapes that
can be formed by attaching 5 squares by their edges (irrespective of symmetry
or orientation). In the settings, humans discuss how to combine the pieces
to form an elephant shape, which requires them to name puzzle pieces (a
non-trivial task resulting in highly varying descriptions) and to describe
target positions or required movements.

110

5.4 Evaluation of Basic Incremental Speech Recognition

Table 5.1: Overview of corpus statistics of the three corpora used for incremental
speech recognition evaluation.

OpenPento (acted) OpenPento (WOZ) Verbmobil

utterances 85 255 1187
transcribed words 706 2364 17322
vocabulary size 179 335 1722
total audio duration 4’49” 28’43” 1:49’49”
avg. word duration (in s)∗ 0.378, 0.210, 0.335 0.395, 0.310, 0.320 0.299, 0.195, 0.240

word error rate (WER) 18.8% 62.4% 34.6%

∗averages are reported as means, standard deviations, and medians.

acted corpus can be explained by the fact that utterances were simple, very similar to
utterances contained in the languagemodel, and the fact that the speakers were known
to the acoustic models. OpenPento WOZ shows that these recognition models are
hurt badly by other speakers in actual human-computer interaction, which included
di�erent ways of interacting and describing puzzle pieces, as evidenced by the high
error rate. Finally,WER forVerbmobil is moderate given themuch broader vocabulary
and the di�ering speakers between training and test sets. �is is because the models
used were trained on much more in-domain data than for the other two corpora.
In principle, the author would have preferred to present low word error rates for all

corpora. However, the training of acoustic and language models for German dialogue
speech from scratch was only one among the many tasks to be performed for this
thesis. Finally, while lowWER is certainly advantageous when building successful
SDSs, the range of error rates spanned by the recognition results for the three corpus
setups considered in this chapter are very useful for comparison purposes in the
investigation of incremental performance metrics.
Table 5.2 summarizes the incremental performance metrics for the three corpus

experiments. As explained in Chapter 3.3.2, rcorrectness is determined by the
proportion of incremental hypotheses that are identical (apart from label timing
mismatches) to what should be known at the time the hypothesis is active, relative to
the �nal recognition result. Likewise, pcorrectness captures the proportions where
the incremental hypothesis is a pre�x of what would be rcorrect (to account for the
lag introduced by recognition).
�e table shows that correctness is very stable across the three conditions, with the

recognizer agreeing with its ultimate decision for this stretch of speech for roughly

111

5 Incremental Speech Recognition

Table 5.2: Overview of incremental performance metrics for raw incremental speech
recognition.

OpenPento (acted) OpenPento (WOZ) Verbmobil

r-correct 30.9% 25.6% 23.1%
p-correct 53.1% 55.0% 54.2%
edit overhead (EO) 90.5% 90.7% 90,2%
EO⊘ (with substitution) 83.8% 84.8% 83.1%
avg. FO∗ 0.275, 0.187, 0.230 0.332, 0.301, 0.260 0.274, 0.249, 0.210
avg. FD∗ 0.021, 0.299, –0.05 0.143, 0.492, 0.070 0.160, 0.418, 0.070

∗averages are reported as means, standard deviations, and medians, in seconds.

25% of the time. An additional 25-30% of the time, the recognizer is lagging behind
but it is not following wrong hypotheses. Finally, for the remainder, about 45% of
the time, the recognizer is following wrong hypotheses. Although some proportion
may be spent in states where the current hypothesis is actually running ahead (i. e.
a correct word is recognized even though it hasn’t started yet according to the gold
standard), the high EOmakes this unlikely.
Edit overhead (EO) is a metric to capture the dynamics of the change between good

and bad hypotheses: it counts the number of edits (adding a word: ⊕; or removing a
word: ⊖) and gives the proportion of super�uous edits (i. e. edits that would not be
necessary for an ideal recognizer). It thus complements correctness, which does not
give any hint about the ordering of wrong hypotheses. (�e ordering can be crucial,
especially in 1-best processing, as it determines the amount of re-processing for the
consumer of the incremental hypotheses.) As can be seen, EO is again stable between
corpora at about 9/10, that is, only one out of 10 edits should be necessary.
A further analysis of the edits shows that out of the 9 super�uous edits, 8 are

revoke/add pairs that could be combined to substitution edits (⊘). With substitution,
the overall number of edits is reduced, resulting in an EO⊘ of about 5/6, with 2/3 being
substitutions, 1/6 being bad single add or revoke edits, and the �nal 1/6 being good edits.
Neither EO nor EO⊘, or the proportion of revoke/add pairs that can be represented by
substitution change much between corpora; hence only EO will be considered in the
remainder of the chapter, without any loss of information.
However, whether an architecture for incremental processing (like InproTK) im-

plements substitution as a special case of revoke and add doesmake a di�erence if
some of its processors can handle substitution with less e�ort than pairs of revoke and
add. (For example, a simplistic parser might not need to act upon the substitution of

112

5.4 Evaluation of Basic Incremental Speech Recognition

 0

 10

 20

 30

 0 0.5 1 1.5 2

%

time from start of word, in s

FO

 0

 10

 20

 30

-1 -0.5 0 0.5 1 1.5 2

%

time from end of word, in s

FD

OpenPento acted
OpenPento WOZ

Verbmobil

Figure 5.5: Histograms showing the distribution of FO (le�) and FD (right) for the
three corpora. At the bottom, box plots show the median, the range of the
quartiles (box), and the 5% and 95% quantiles (whiskers).

a word if the part of speech does not change.) InproTK currently does not provide
substitution edits, favouring code simplicity over potential e�ciency gains.
Where edit overhead is important mostly to estimate processing e�ort induced by

hypothesis changes, timeliness metrics, to be discussed now, describe the possibilities
opened up by incremental processing: �rst occurrence (FO) describes when the word
(and its predecessors) �rst appears as part of the recognition, �nal decision (FD)
describes when the recognition of a word does not change anymore.
On average, a word is �rst recognized some 300ms a�er the word has started, and,

on average, it is �nally decided on some 150ms a�er it has ended. Unlike correctness
and edit overhead, timing metrics are per word and the resulting distribution of FO
and FD timings are insu�ciently described by a single number. Figure 5.5 shows
histograms of the distributions, as well as box plots. As can be seen, the distributions
(especially for FO) are positively skewed, and as a consequence mean and standard
deviation are only of limited explanatory power, with median and quantiles being
more expressive.
Again, the performance between the corpora is quite similar, with the simplest

corpus (OpenPento acted) slightly outperforming the others. In fact, in this corpus,
the median FD is negative, that is, more o�en than not a word is �nally decided on
even before it has been completely spoken. (As a side note, in all corpora the vast
majority of words is �rst hypothesized before it is completely spoken, FOword rel < 1, for

113

5 Incremental Speech Recognition

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Pento acted Pento WOZ Verbmobil

FO

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Pento acted Pento WOZ Verbmobil

FD

Figure 5.6: Box plots showing the in�uence of words considered in timing metrics
when a transcript is available. For each metric and corpus a group of three
box plots is shown: (a) all words recognized on the le�, (b) both matches
and substitutions relative to the transcript in the middle, (c) only words
matching the transcript on the right. Box plots show median, quartiles
and 5%/95% quantiles.

77% to 87% of all words. �is �nding will be used as a foundation of the application
reported in Chapter 6.2.6.)
Chapter 3.3.1.1 argued that the �nal ASR output should be used as gold standard.

However, one might be concerned that timing metrics di�er systematically between
correctly recognized and incorrectly recognized words. In the worst case, good timing
could be rendered useless if timing were especially bad for correctly recognized words,
and only wrong words (not spoken by the user) were recognized quickly. It turns out
that the opposite is the case. When given a transcript for the loaded corpus, Intelida
is able to limit FO/FD calculation to only those words that were correctly recognized (as
determined by minimum edit distance matches), or to those words that either match
or are substitutions, but leaving out inserted or deleted words (which potentially
should be especially prone to timing errors).
Box plots summarizing the in�uence of ASR word errors on timing metric dis-

tributions are shown in Figure 5.6. For all corpora, the long end of the distribution
is shortened considerably when ignoring wrongly recognized words in the compu-
tation and the e�ect is slightly larger for FD than for FO. �e most extreme cases of
delay before a recognized word becomes �nal (max(FD), not shown in the �gure) are

114

5.4 Evaluation of Basic Incremental Speech Recognition

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8

p
e

rc
e

n
ta

g
e

 o
f

w
o

rd
s

th
a

t
a

re
 fi

n
a

l

correction time in s

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8

p
e

rc
e

n
ta

g
e

 o
f

IU
s

su
rv

iv
in

g

IU age in s

Figure 5.7: Correction time (le� side) vs. IU survival time (right side) for the Open-
Pento acted corpus.

reduced by almost two seconds. (In other words: when the ASR takes very long to
decide, chances are that the word is going to be mis-recognized anyway.)
Finally, correction time was proposed as a simple measure of stability based on

FO and FD. �e correction time of a word is the time span between �rst occurrence
of the word and the �nal decision for it: correction time = FD − FO. Figure 5.7 (le�
side) plots the percentage of words with correction times equal to or lower than the
time on the x-axis for OpenPento acted. �e graph starts at an initial 58.6% of words
that were immediately correctly hypothesized, without further changes. �e graph
rises above 90% for a correction time of 320ms and above 95% for 550ms. Inversely
this means that one can be certain to 90% (or 95%) that a current correct hypothesis
about a word will not change anymore once it has been around for 320ms (or 550ms,
respectively). �ere is, however, one �aw in this reasoning: at runtime, there is no
way to know whether an hypothesis that has been around for 320ms is a correct
hypothesis, and the correction times have only been computed for correct hypotheses
(as it is only for these words that FO and FD exist).

It is thus more meaningful to compute the ages reached by all hypothesized words
directly, regardless of whether they later turn out to be part of the �nal hypothesis.15
Figure 5.7 (right side) plots the percentage of hypothesized words that have survived
(i. e. not been revoked) for the time on the x-axis for the same corpus. As can be clearly
seen, the curve is much steeper, meaning that most wrongly hypothesized words ‘die

15However, this computation is less straightforward than that for correction time.

115

5 Incremental Speech Recognition

 0

 20

 40

 60

 80

 100

2 5 8 11

LM weight

R-Correctness
P-Correctness
Edit Overhead

WER

 0

 20

 40

 60

 80

 100

orig -20 -15 -10 -5 0

signal to noise ratio in dB

R-Correctness
P-Correctness
Edit Overhead

WER

Figure 5.8: Stability against variations in LM weight (le�) and with added random
(white) noise to the signal (right).

young’ (hypotheses that are not taken back anymore are assigned a correction time of
0 as above). More importantly, this curve, once measured for a certain setup, can be
used at runtime to give a stability estimate (i. e. the probability of the IU not being
revoked) for any word IU (regardless of whether correct or not) by reading o� the
stability likelihood for the IU’s age. (�is feature is not implemented in InproTK but
would be a trivial addition. However, further investigation would be necessary to �nd
out whether it generalizes to more IU types beyond words.)

5.4.1 Variations of the Setup and Stability of Results

�is subsection analyses the incremental performance of iSR under variations of the
setup. While the variation between results for di�erent corpora (and their corre-
sponding setups) has been discussed above, the systematic variations performed here
allow more detailed analyses of the in�uences of speci�c factors on iSR performance.
�e smallest corpus used above (OpenPento acted) was analysed under systematic

addition of white noise at di�erent levels, and speech recognition was performed with
varied language model weights. �ese parameters were chosen to test the in�uence of
acousticmodel and languagemodel performance, respectively, on iSR. One hypothesis
tested by a variation of the LM weight is that a lower language model in�uence results
in lower stability of results because languagemodel scores are completely independent
of the signal and hence of hypothesis changes caused by signal variation.
Figure 5.8 plots correctness, EO, and WER for the di�erent conditions. As can

be seen, the metrics remain remarkably stable across the varied conditions. While
not shown in the graphs, FO remains largely unchanged under varied LM weights,
but FD reduces with higher weights, underpinning the hypothesis above that the lan-

116

5.4 Evaluation of Basic Incremental Speech Recognition

guage model provides stability. Timing metrics do not change much when moderate
amounts of noise are added (i. e. when a moderate mismatch between acoustic model
and signal occurs). However, for very high noise levels (-5 dB and 0 dB signal-to-
noise ratio, SNR)WER approaches 100% and such an ASR cannot be expected to give
meaningful results. As a consequence, timing metrics give erratic readings.
To conclude, the incremental evaluation metrics remain relatively stable across

varying WER, indicating that they can be well used to independently describe the
di�ering quality aspects of speech recognition overall (well represented byWER) and
its incremental aspects.
�e evaluations in this chapter were all performed on recognizers based on statisti-

cal language models (as no suitable grammars have been developed for the domain).
�e author’s expectation is that grammar-based recognition – at least with small
grammars – will lead to di�erent incremental performance characteristics because
best hypotheses can switch around for long subsequences of words, where SLMs
would long have decided on one hypothesis. Selfridge et al. (2011), use both SLMs and
rule/grammar-based language models, however evaluate them on di�erent data sets,
so no direct comparison can be found there, either.

5.4.2 N-Best Processing

In this section so far, only the behaviour of the iSR current best hypothesis has been
looked at. �is subsection, based on (Baumann et al. 2009), investigates how much
could be gained from considering other (n-best) hypotheses that are considered by
the token-pass algorithm but that are not ranked best at that point in time.
It was mentioned above that the n-best list may hold additional value, at least in the

non-incremental case (Chotimongkol and Rudnicky 2001; Lee, Jung, and Lee 2008;
Purver, Ratiu, and Cavedon 2006; Williams 2008). Preceding (Baumann et al. 2009)
there was little work on n-best lists in incremental speech recognition: Miyazaki,
Nakano, and Aikawa (2002) present an extension to a method for incremental NLU
(Nakano et al. 1999) to use n-best lists and show some improvement in the NLU task,
but apparently no evaluation of n-best iSR took place; it is di�cult for the author
though to evaluate the claims and to understand the details as the paper is available
in Japanese only.
�is section tries to evaluate whether n-best lists could also be advantageous re-

garding the dimensions of incremental performance outlined in Chapter 3 and already
investigated in the present section. �e analyses performed can help to decide whether
using n-best lists in an incremental setting could in principle be advantageous.
N-best lists may be especially valuable for dealing with high speech recognition

error rates (as they partially solve the problem of high error rates). For this reason,

117

5 Incremental Speech Recognition

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45

F
O

 d
is

tr
ib

u
ti

o
n

 (
in

 s
e

co
n

d
s)

N

Figure 5.9: FO distribution when considering n-best hypotheses with varying n in the
OpenPentoWOZ corpus (limited to utterances with correct �nal result).
Boxplot whiskers show 5%/95% quantiles.

the OpenPentoWOZ corpus is used in the evaluations in this subsection, as it shows
the highest error rates among the three corpora.
Baumann et al. (2009) focused the analysis of incremental n-best lists on the overall

size of the lists (which vary in size due to relative beam pruning and were found to be
considerably larger incrementally than non-incrementally), and on the positions of
oracle/anti-oracle word error rates (i. e. the positions of the best and worst hypothesis
in the n-best lists). It can be argued that diachronic metrics such as edit overhead

do not apply equally well to n-best processing, as a system that is based on multiple
incremental hypotheses at a timewould certainly be organized substantially di�erently
from the add/revoke scheme used in the IUmodel processors. However, Baumann
et al. (2009) also le� out the question of timing of results. �is section makes up
for that omission. �e question is: how much earlier might results become available
when considering n-best instead of one-best results? �e focus will be on FO, as this
more easily extends to the n-best case than FD (for which similar issues arise as for
diachronic metrics). the de�nition of FO is straightforwardly extended to the n-best
case by considering not only the best hypotheses (over time) when looking for the
moment in which a word (and its predecessors) were �rst correctly recognized, but
all hypotheses in the n-best list.

118

5.5 Optimization of Incremental Speech Recognition

�e analysis presented here is restricted to �les without sentence error (i. e. �les
where the �nal result matches the gold standard). �is avoids the problem ofmatching
(many) hypotheses to �nal results that may themselves be faulty and is made possible
by the fact that there is no fundamental di�erence between timing in �les with errors
and �les without errors (cmp. Figure 5.6). �ere are 14 utterances which are correctly
recognized at best hypothesis (containing 43 words) in the OpenPentoWOZ corpus.
Figure 5.9 shows FO distributions of the 43 words relative to the size of the n-best

list considered. As can be seen, FO decreases with larger n-best sizes. Chances are that
a word does not enter the token list on the top rank, but that its probability increases
over the course of a few frames; the larger n, the earlier it appears on the n-best list
on its way to the top-ranking position. �e largest improvements occur within the
�rst few entries of the n-best list (as is the case for similarity measures in Baumann
et al. 2009).
Of course, a data set of only 43 entries is too small to derive ultimate conclusions. It

was mentioned above that the analysis can only help to �nd out whether n-best lists in
an incremental setting could in principle be advantageous. N-best lists, however, also
have the downside that they merely defer the decision for a ‘best’ hypothesis to a later
stage. �us, while FO may be reduced with passing on n-best lists, it remains to be
shown how to carry over this advantage to applications in practice. �e results in this
section indicate that the size of the n-best list need not be overly large as the largest
gains are already achieved with a relatively small number of alternative hypotheses.
Overall, it appears that the performance gains (at least in terms of incremental

performancemetrics) of using n-best hypotheses are too small to justify implementing
n-best processing within the incremental architecture. In the remainder of this work,
only one-best hypotheses will be considered and a more thorough (re-)analysis of
the merit of incremental n-best hypotheses, as well as an investigation to what extent
techniques and architectures from the non-incremental n-best and the incremental
one-best cases can be transferred, are le� to future work. �at future work may also
have to come up with solutions to measuring a more general form of processing
overhead for incremental n-best processing, as the approach of counting introduced
and dropped hypotheses at every time step (as outlined by Baumann et al. 2009)
appears to be overly simplistic.

5.5 Optimization of Incremental Speech Recognition

�e previous sections reported results for iSR in a raw form, in the way that iSR is a
by-product of the recognition process. �is section presents possibilities of improving
iSR results with regards to the metrics de�ned in Chapter 3.3.2 and as used in the
previous section.

119

5 Incremental Speech Recognition

<s>

eine

den

oben

nimm

nehmen

in

neben

nehme

'nem

<s>

oben

nehmen

neben

'nem

nehm'n

nimm

in

nimmt

ende

und

nehm

ente

nehme

end

dem

den

du

die

d'

in

<s>

ende

nimm

nehmen

neben

'nem

ente

bild

der

den

de

du

wir

dann

<s>

ende

endet

nimm

bild

it

bitte

ecke

bitt

bilden

dicke

ick

dete

dit

bett

Frame 369

Frame 101Frame 88

Frame 83Frame 78

<s> nimm bitte das kreuz <sil> das

rote

rot

'ch

kuh

br

du

kann

dr

da

ko

l

d'

ick

Figure 5.10: Five snapshots of the recognition lattice (i. e. folded n-best lists) at dif-
ferent points in time, while the author is saying “Nimm bitte das Kreuz
– das rote [Kreuz – oben links – genau]”. �e best-ranked hypothesis is
colored – green if it is correct, red if it is incorrect.

120

5.5 Optimization of Incremental Speech Recognition

It was already mentioned multiple times that there are trade-o�s to be consid-
ered between the di�erent aspects of incremental processing and hence improving
performance in one metric may come at the cost of deteriorating other metrics. How-
ever, as the dependencies between metrics are not linear, and as some metric may be
more important for a certain application than another, a relevant improvement is still
possible.
�e most important achievement of the techniques to be described is the re-

duction of edit overhead, as this was one of the major problems that came up in
the evaluations. In the �rst implemented (sub-)systems developed using InproTK
(which integrated incremental speech recognition and incremental semantic chunk-
ing; Atterer, Baumann, and Schlangen 2009), the enormous amounts of re-processing
induced by a high iSR edit overhead would have made the system far too slow for
real-time applications, which highlighted the need for low edit overhead early on in
the research.
Figure 5.10 shows the development of recognition hypotheses during incremental

recognition. �e sub-�gures show the state of the recognition lattice, that is, a folded
visualization of the recognition n-best lists at four (almost consecutive) points in time
early on, and a ��h lattice in the middle of recognition. �e lattice representation
shows not only the current best hypothesis but also hypotheses that are similarly
considered by the recognizer at that point in time. As can be seen, the recognizer
intermittently changes the correct sub-hypothesis “nimm” (at Frame 78) to “ende”
(at Frame 83) before later changing back (at Frame 88) and correctly extending the
hypothesis with “bitte” (at Frame 101). Finally, the ��h lattice (at Frame 369) shown
in the �gure exempli�es that changes in the hypotheses are mostly occurring towards
the right edge, that is, the youngest parts of the hypothesis. �e �rst method to be
presented builds on this observation. �e lattices in the �gure show only indirectly,
how long the changes in hypotheses persist (e. g. the change from “nimm” to “ende” and
back to “nimm” has occurred within 10 frames in the example). �e second method
will be based on such timings, that is, it exploit the way that hypotheses evolve.
Both methods described in this section do not alter the derivation of the raw iSR

hypotheses from querying the token-pass algorithm’s list of best-ranking tokens.
Instead, we de�ne ways of manipulating the (sequence of) output hypotheses using
simple (incremental) post-processing or �ltering techniques:

De�nition 5.1. An hypothesis �lter to improve an incremental processor may have an
internal state S ∈ S and maps an hypothesis (hypin) onto another hypothesis (hypout):
(S ×H) Ð→ (S ×H). We again require hypouttmax

= hypintmax
, that is, the �nal output of

the mapping is identical to the original �nal output, maintaining the yieldingness
criterion (see De�nition 3.3).

121

5 Incremental Speech Recognition

Notice that the above de�nition does not impose any limits on the information that
constitutes the state. Any information from the incoming hypotheses, and possibly
other information may alter the state. �e simplest �lter for improving iSR that will
be outlined and evaluated in the next subsection, uses a constant state which is not
in�uenced by the incoming hypotheses.

5.5.1 Right Context

One of the problems of iSR (and incremental processing in general) is that if output
is expected to be generated as soon as some input is available, o�en only the very
beginning of input is available, on which some (o�en wrong) output is based, as can
be seen in Figure 5.10. Furthermore, as new evidence is integrated, the hypothesis for
the most recent frames have to be changed frequently, whereas the hypotheses for
older parts of the input are already relatively stable and change less o�en. We call the
frequent changes towards the most recent parts of the input jitter. Jitter is the reason
for high edit overhead.
A simple strategy to avoid the jitter is hence to allow the processor some right context

which it can use as input but for which it does not yet have to provide any output. By
excluding themost recent part from the hypotheses, instability is reduced. TypicalASR
systems use the right context strategy internally at word boundaries (with very short
right contexts) in order to restrict the language model hypotheses to an acoustically
plausible subset (Ortmanns and Ney 2000). For incremental speech recognition,
Wachsmuth, Fink, and Sagerer (1998) �rst used this idea for early integration of
speech recognition and parsing. However, in their architecture, hypotheses could not
be changed later on, so that their strategy leads to a decrease in overall performance
when compared to non-incremental processing.
In terms of the formalism of hypothesis �ltering, the right context �lter does not

make use of a dynamic state; the state simply is a static parameter ∆, and is used as
follows:

De�nition 5.2. �e right context �lter with context size ∆ ∈ N is the mapping of
hypint = w1..k to hypoutt = w1.. j with ∀i ∈ (1.. j) ∶ start(wi) < t − ∆. �at is, the right
context method removes all words from the hypothesis that are “younger” than ∆
according to hypint .

Figure 5.11 presents evaluation results with varied right context sizes for the Open-
Pento acted corpus. �e results for edit overhead and pcorrectness show that
Sphinx-4 uses an internal acoustic lookahead as proposed by (Ortmanns and Ney
2000) and described above to restrict language model choices. It is for this reason
that the in�uence of the right context �lter only sets in with ∆ > 30ms. For larger ∆,
the edit overhead decreases.

122

5.5 Optimization of Incremental Speech Recognition

 0

 20

 40

 60

 80

 100

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

right context in s (scale shows larger right contexts towards the left)

(strict) R-Correctness
discounted R-Corr.

P-Correctness
Edit Overhead

WER

Figure 5.11: Correctness, edit overhead and �xed-WER for varying right contexts ∆
in the OpenPento acted corpus.

Of course, allowing the use of a right context leads to the current hypothesis lagging
behind the gold standard and using only information up to t − ∆ reduces correctness
(which expects words to match up to time t. To account for this lag (which is known
in advance) a discounted rcorrectness is also plotted in the graph, which limits the
gold standard to be matched to t − ∆. As can be seen in the �gure, the right context
method is e�ective in this discounted metric.
�e �gure does not show timingmetrics, as the e�ect on timing is relatively straight-

forward: blocking ‘new’ words from the recognition increases delays (FO and FD)
approximately with ∆.
To illustrate the e�ect of a system that does not support changing previous hypothe-

ses but immediately commits itself, the �xed WER is also plotted, which would be
reached by such a system when using a right context of ∆. As can be seen in the �gure,
it is extremely high for low right contexts (i. e. when committing almost immediately,
exceeding 100% for ∆ ≤ 400ms) and remains substantially higher than the non-incre-
mentalWER even for fairly large right contexts. �eWER plot by Wachsmuth, Fink,
and Sagerer (1998) looks very similar, highlighting the generality of this observation.
Finally, the concept of right context can be extended into negative ∆’s: for negative

values (plotted to the right of the vertical axis), the plot shows the performance of
the iSR in predicting the future as it measures the correctness of the hypothesis in
the near future. �e graph shows that 15% of hypotheses will still be (discounted
r-)correct 100ms in the future and 10% will still be correct for 170ms. Of course, this
is a consequence of words o�en being �rst recognized before they are over, meaning
that such hypotheses will remain r-correct for a certain amount of time. Neither the

123

5 Incremental Speech Recognition

right context �lter nor speech recognition is able to predict words that have not yet
started.

5.5.2 Hypothesis Smoothing

�e right context �lter could be described as the result of analyzing jitter in a static way:
looking at incremental results such as the one depicted for Frame 369 in Figure 5.10 it
is easy to draw the (correct) conclusion that jitter occurs at the right end of hypotheses
and that skipping this part when producing incremental hypotheses will improve
results.
�is analysis, however, ignores the very important aspect of diachronic evolution

of the incremental hypothesis. For example, a frequent problem in an error analysis
of the right context �lter was that words such as “zwei” are sometimes intermittently
extended (“zweite”, “zweiter”) before the correct continuation (“zwei drei”) is found
(it could not be found before, because the vowel in “drei” had not been realized yet).
�e size of the right context must be chosen to be large enough that most of these
changes are not output.
An analysis of the dynamics of hypotheses leads to a di�erent strategy: intermittent

mis-recognitions (such as “zweite”, “zweiter”) were observed to only last for a few
consecutive recognition hypotheses. Exploiting this fact leads to edit �ltering, which
does not discard a �xed portion of hypotheses but �lters parts of the hypothesis based
on properties of the edit that introduces the change. �at is, the smoothing method
explicitly deals with edits to reduce edit overhead, avoiding the main �aw of the right
context �lter.

De�nition 5.3. An edit �lter is a hypothesis �lter which stores hypoutt−1 as part of its
state S , calculates the list of edits E = di� (hypoutt−1, hyp

in
t) and applies some or all of

these edits to its output depending on a classify operation and some set of features
F ∈ F which may be derived from the edit in question, the complete hypothesis,
or anything else in the �lter’s state: classify ∶ F × E Ð→ {pass,¬pass}. Notice that,
to ensure applicability, an edit in E can only be applied if all its predecessors in the
list are applied as well. In other words: testing whether to apply edits can stop once
classify rejects an edit (or a later pass must override a preceding reject).

Simply put, iSR performance can be improved by applying only ‘good’ edits and
inhibiting ‘bad’ edits. Suppressing an add edit for a wrong word (or a revoke edit of a
word that would later turn out to be correct) improves performance. �e di�erence
between correction time and IU survival time, as can be seen in Figure 5.7 indicates
that bad IUs die more quickly than good IUs, and correspondingly, a bad add edit
will be revoked quickly. �is is jitter. �e simplest classify operation can hence be
based purely on the time that an edit is valid:

124

5.5 Optimization of Incremental Speech Recognition

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

smoothing in s (scale shows larger smoothings towards the left)

(strict) R-Correctness
discounted R-Corr.

P-Correctness
Edit Overhead

Figure 5.12: Correctness, edit overhead and �xed-WER for varying edit smoothing
factors σ in the OpenPento acted corpus.

De�nition 5.4. �e smoothing �lter is an edit �lter with the state S caching the list
of edits from E which have not been applied in the previous step(s), together with
a count of how many times that edit has not been applied. classify returns pass i�
the edit’s count reaches a smoothing factor σ (which is a constant in the state), which
causes the edit to be removed from the cache and apply’d to hypout.

It turns out that part of the method of Imai et al. (2000) is based on smoothing,
in that words are considered only when they have shown up in two consecutive
hypotheses (i. e. using a �xed smoothness of 2).
Figure 5.12 shows the result of hypothesis smoothing with di�erent σ values, again

for the OpenPento acted corpus. It shows that edit overhead falls rapidly, reaching
50% (for each edit necessary, there is one super�uous edit, EO parity) with only
110ms and 10% with 320ms. (�e same thresholds are reached by the right context
method at 530ms and 1150ms, respectively, as shown in Figure 5.11.) Likewise, pre�x
correctness improvements are better than for the right context method. �e results
for rcorrectness are poor: this is due to correct hypotheses being held back for
too long, especially when the hypothesis sequence is interspersed with wrong edits
(which only last for few consecutive hypotheses but reset the counter a�er which
edits are passed). �is is especially true for larger σ and might indicate that a more
intricate handling of smoothing counters may hold additional bene�ts.
We compare timing performance of the twomethods at EO parity, that is, with an EO

around 50%. FO and FD distributions for right context with ∆ = 530ms and smoothing
with σ = 11 (corresponding to 110ms of smoothing) are shown in Figure 5.13. As
can be seen in the �gure, smoothing leads to lower delays. One advantage of the

125

5 Incremental Speech Recognition

 0

 20

 40

 60

 80

 0 0.2 0.4 0.6 0.8 1 1.2

%

time from start of word, in s

FO

 0

 20

 40

 60

 80

-0.4 0 0.4 0.8 1.2

%

time from end of word, in s

FD

smoothing σ = 110 ms
right context Δ = 530 ms

Figure 5.13: Distributions of FO (le�) and FD (right) for right context and smoothing
at the respective edit overhead parities in the OpenPento acted corpus.

right context method is the smaller variation, especially in FO. �is smaller variation,
however, comes at the price of much higher delays, with words only ever being output
530ms a�er they started (at the earliest). Given a mean word duration of 378ms (cmp.
Table 5.1), this means that hardly ever is a word output before it has been completely
spoken.
Notice that the e�ect of edit smoothing with �xed σ inhibits all IUs up to the age of

σ . As mentioned towards the end of Section 5.4, the graph in Figure 5.7 (right side)
could be used to give stability estimates for IUs. In fact, hypothesis smoothing is a
form of binary stability estimator that suppresses all IUs until they reach the threshold
age of σ .

5.5.3 Advanced Smoothing Methods

�e edit �ltering method from above relies on a central classify operation that deter-
mines when an edit should be passed. �e smoothing method implemented in the
previous subsection relied on age alone but many additional features could also be
helpful.
As an example, Figure 5.14 plots the correction times of the ten most common

words in a small corpus of user utterances in a command-and-control task (to be
further described in the next section). As can be clearly seen, the correction times
di�er radically. �e limited size of the corpus does not allow for signi�cance estimation
but the observable tendencies could be explained by a range of aspects, from phonetics

126

5.5 Optimization of Incremental Speech Recognition

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

p
e

rc
e

n
ta

g
e

 o
f

w
o

rd
s

th
a

t
a

re
 fi

n
a

l

decision time in s

links
rechts

nach
noch

bisschen
stopp
weiter
fallen

lassen
ein

all other words

Figure 5.14: �e correction times of the ten most common words in a small corpus
of user utterances in an incremental command-and-control task.

(words sounding similar to other words), words having di�erent lengths, to language
modelling (words occurring in similar contexts). In any case, the word identity could
be used by the classify operation to decide how quickly to pass on an edit.
Another range of features lies in the speech recognition process proper, for example

by exploiting the range of other hypotheses in the speech recognition lattice. Finally,
the recent history of edits, the type of edit and other aspects of the hypothesis and
even the dialogue state could be used to determine whether an edit should be passed
on or not by the classify operation.
Hamadeh (2012) trained RIPPER classi�ers (Cohen 1995) for the edit �lter approach

using some of the features mentioned above, for the OpenPento acted corpus. �e
resulting classi�ers hardly outperformed the standard smoothing approach based on
age alone, and age was the main feature chosen by all trained decision trees. However,
the experiments showed that it is bene�cial pass on revoke edits unconditionally,
without delay.
McGraw and Gruenstein (2012) showed that the very similar task of learning

stability estimates can be successful, at least when using more advanced machine
learning methods (the classi�ers used by Hamadeh (2012) ignore the fact that the task
requires sequence learning), more features and much more data. Still, the plots in
(McGraw and Gruenstein 2012) show only a relatively small improvement over using
the simple age feature alone.

127

5 Incremental Speech Recognition

Figure 5.15:�e Greifarm incremental command-and-control task with a few com-
mands (in quotation marks) and their respective e�ects (shown as ar-
rows). �e goal of the game is to place the robot grappler above the waste
bin and to then release the load.

5.6 Example Application: Incremental Command-and-Control

�is section shows iSR in use in an application. For concreteness, the application
is designed so that it highlights clearly the advantages of incremental speech recog-
nition. �e domain for the system, a command-and-control task, is presented in
Subsection 5.6.1, and the setup and results of a Wizard-of-Oz experiment within the
domain is detailed in Subsection 5.6.3.
Subsection 5.6.4 comments on the implementation of the full incremental command-

and-control application based on InproTK, and Subsection 5.6.5 reports results of a
small-scale evaluation of the system.

5.6.1 The Greifarm Domain

�e domain of the example application is a speech-controlled, game-like command-
and-control application. It follows the micro-domain principle (Edlund et al. 2008)
in that it exposes only those aspects of dialogue interaction that the system is meant
to resolve, and simpli�es other problems that are outside the focus. �e task for users
is to order a simulated robot grappler to move above a recycle bin and to drop the
load of the grappler (glowing radioactive waste) into the bin. More abstractly stated,
the user controls a 1-dimensional motion plus a �nal commit signal that cannot be
undone. A screen-shot of the user interface is shown in Figure 5.15.
In the domain, there are just four possible actions: moving to the right, moving

to the left, stopping an ongoing motion, and �nally, dropping the load. (In the
domain, people o�en further specify a move action with the help of modi�er words

128

5.6 Example Application: Incremental Command-and-Control

such as “little”, or “far”.) �ese four actions have highly di�erent associated costs
(in terms of error-costs and timing-costs): stopping the motion can always be undone
(by continuing) and is most useful if executed as promptly as possible. (In fact, stop
is only useful if executed quickly, which di�erentiates this task from conventional
command-and-control.) In contrast, dropping cannot be undone at all, and exposes
the risk of dropping a load o� target. Hence, a falsely executed stop action can be
assigned a very low cost, while falsely dropping has to be assigned a very high cost.
Finally, wrongly moving in some direction can be undone, but will be distracting to
the user, establishing an intermediary cost for wrongly executed actions.
Figure 5.15 shows some examples of user commands as they were uttered in the

WOZ-experiment (see below). A (non-incremental) system that waits until the end
of the utterance before starting to interpret and react will o�en perform worse in the
domain. Especially, users in the domain o�en repeated commands (“stop, stop,

stop!”) to express urgency or to express the requested continuation of an action
(“links, links”). However, a repeated stop command that takes longer before being
executed is certainly counter-intuitive and a non-incremental system would never
trigger continuation utterances, as the �rst action would only be started when the
utterance was over.
While the scenario is very reduced, more complex interaction domains contain

similar (possibly slightly more complex) positioning tasks as sub-problems. (In fact,
a recent system for playing the Pentomino game successfully extends the approach
presented here to steering a Pentomino piece to its target position; see Baumann et al.
2013.)

5.6.2 Cost-based Smoothing

�e domain described above lends itself to a speci�c form of advanced smoothing,
cost-based smoothing: in cost-based smoothing, the cost of misrecognition is taken
into consideration for smoothing decisions. Instead of globally optimizing the time-
liness/stability trade-o�, costs for classify decisions are established and the goal is to
minimize the costs over the course of the utterance:

• falsely adding a word is assigned a relatively high cost that is speci�c to the word
(and, of course, speci�c to the application),

• deferring any ⊕-edit is assigned a small cost to encourage incremental output,
resulting in good timeliness, and

• deferring any ⊖-edit might also be assigned some small cost, so as to increase
hypothesis stability.

Cost-based smoothing hence takes into account high-level information into its
smoothing decisions which must be provided either as examples or speci�ed in rules.
�e classify operation could then, in principle, be learned by a machine-learning

129

5 Incremental Speech Recognition

Figure 5.16: Graphical wizard interface for the robot arm domain; stopping was real-
ized as moving a tiny distance into the opposite direction.

algorithm for sequence learning. In practice however, this has shown to be di�cult
(Hamadeh 2012).
�e simple domain of the robot arm allows for a simplistic form of cost-based

smoothing that is based on some simple rules that also try to take the iSR character-
istics of the di�erent words in the domain into account16:

• words that result in a drop semantics are called stay-safe words and assigned a
high smoothing factor,

• words that result in a stop semantics are called urgent words and assigned a
very low smoothing factor,

• all other words are assigned a default smoothing factor.
�e variable smoothing factors lead to a di�erentiation in the timeliness/stability
trade-o� that correspond to the domain requirements.
As an implementation detail, the variable smoothing counts lead to the smoothing

queue not being ordered by counts anymore. When checking the queue, the case that
an urgent word is preceded by a normal word must be accounted for. In this case, the
implementation ignores the fact that the �rst word’s counter has not yet run out and
outputs this word (and the following urgent word) nonetheless.

5.6.3 Wizard-of-Oz Experiment

AWizard-of-Oz study was performed in the domain to test the assumptions about
user behaviour in the domain. 12 subjects participated in the data collection which
resulted in 40 minutes of audio and 1500 transcribed words.
�e linguistic data show the expected patterns, namely direction commands, o�en

with modi�ers for the desired strength of the motion, frequent stop commands,

16Referring back to Figure 5.14: “stopp” has a very low average correction time, while “fallen” (a
word relevant to the drop action) has a relatively high correction time.

130

5.6 Example Application: Incremental Command-and-Control

Table 5.3: Concepts derived from the collected data and generated by the iNLU

component.

Actions

concept example words

left “links [left]”
right “rechts [right]”
continue “nochmal [again]”
reverse “zurück [back]”
stop “halt [stop]”
drop “loslassen [release]”

Modi�ers

concept example words

weak “bisschen [a little]”
normal (default modi�er)
strong “weit [far]”
max “ganz [to the very]”

and longer pauses before drop commands, as users were aware of the fact that this
action could not be made undone. (Additionally, and remaining unmodelled in the
implementation described below, users frequently employed lengthening of direction
words (“riiiight”) to express distance.)

�e analysis showed that the vast majority of user utterances can be described by
six simple commands: four directional commands for le�, right, continuation in the
same direction, and reversal into the opposite direction, a stop and a drop command,
which were realized with a relatively small vocabulary. In addition, the strength of
directional commands was o�en adapted using modi�er words. Absolute direction
commands (“an den linken Rand”, “zwei Zentimeter nach rechts”) were rare and
have been excluded from the command inventory. �e action and modi�er concepts
are summarized in Table 5.3.
In the study, the wizard chose between moving (with three possible strengths),

stopping and dropping, using the graphical interface shown in Figure 5.16 and without
being able to see the user’s visualization of the domain. �e exact distance covered by
the simulated robot armwas not �xed but also depended on somenormally distributed
random noise. �is noise was introduced to simulate errors but participants noted
that the behaviour seemed very human-like. For this reason, this non-deterministic
behaviour was also adopted in the implemented system described next.

5.6.4 System Implementation

�e system was implemented in InproTK, using custom-built iNLU and action han-
dling components. As this is the �rst system described in the thesis, and as the system

131

5 Incremental Speech Recognition

GreifarmExperiment
inits the system; starts recoRunner

+notifyDrop(gameScore)
store the game's score, change the

deltifier, and (may) show a dialog

GreifarmActor
handles incrementality -- add/revoke

(but nothing else)

-unusedWords: List<WordIU>
the words that have yet to be interpreted

-performedActions: List<ActionIU>

+hypChange(ius,edits)
updates unusedWords and calls NLU

+processorReset()
clears the lists

+gameReset()
also resets greifarmController

GreifarmController
interface to the system's world

-greifarmPosition: double
current position of the arm once any currently ongoing

motions end

-hasControl: boolean
whether actions are possible. Actions are impossible once

drop() has been executed and until reset() is called

+drop()

+stop()

+moveTo(double)
move to given position

+getCurrentPosition(): double

+getGoalPositionFor(amount:double): double
calculate the goal position given the distance from the

current position

+reset()
start new game

NLU
turns words into ActionIUs

+incrementallyUnderstandUnusedWords()

+understandUnusedWordsOnCommit()

GameScore
stores, shows

and updates a

game score

<<interface>>

DropListener

+notifyDrop(gameScore)

gui.GreifArmGUI
handles all things GUI

RecoRunner
repeatedly calls recognition

(keeping our system alive)

+inRecoMode: boolean
whether to recognize or to sleep

<<IU>>

ActionIU

-greifarmController

-goalPosition: double

+execute()
called immediately after construction;

executes the action

+reexecute()
moves the arm to the goal position

+update(EditType=revoke)
on revoke, we reexecute() the SLL

<<enum>>

ActionType
stop, drop,

left, right,

continue,

reverse

<<enum>>

ActionStrength
none, weak, normal,

strong, max

sphinx.Recognizer

incremental.ASR

newResult

hypChange

<<IU>>

inc.unit.WordIU

grounding

1

1..n

<<create>>

D
ia

lo
g

u
e

 S
y

st
e

m
D

o
m

a
in

 M
o

d
e

l

Figure 5.17: UML diagram showing the architecture of the Greifarm prototype and
the di�erentiation between domain model and dialogue system proper.

implements active IUs, the description will be somewhat more elaborate than in later
chapters. In addition, a full UML diagram of the system is shown in Figure 5.17.
�e GreifarmActor receives incremental hypotheses from iSR, and keeps a list of

ActionIUs performed so far, as well as a list of WordIUs not yet assigned to any action.
In the case of revocation of a word that is already assigned to an action, the action is
revoked, and its associated words are re-added to the list of unused words for future
re-analysis. �e core of the system are its iNLU and action management capabilities:
�e iNLU greedily creates ActionIUs from the list of yet unprocessed WordIUs,

based on a few simple rules that provide for actions and strength modi�ers as shown
in Table 5.3. �e iNLU has to be prudent not to assign words to actions too quickly
(for example, “weiter” could mean continue but also be the start of “weiter rechts”,
potentially indicating the opposite direction). A second, more eager pass is e�ected
non-incrementally as soon as the user turn has ended.
ActionIUs initiate their e�ects autonomously, as explained below, thus there is no

central dialogue management component; they are active in the sense of Chapter 4.2.2.
�ere are several sub-types for the di�erent types of actions. Implicit direction actions

132

5.6 Example Application: Incremental Command-and-Control

(continue and reverse) autonomously traverse the IU network to identify their
direction. Also, ActionIUs themselves are in charge of handling their own revocation
by undoing their e�ects and re-installing the previous action’s e�ects (except for the
un-undoable drop action). Also, the strength of (unmodi�ed) direction actions may
depend on the previous direction actions (this results in “left left left” becoming
a maximally strong movement). A more traditional, �ow-oriented system might
use some sort of GrapplerIUModule to consume ActionIUs and centrally control the
interaction with the domain.
ActionIUs (and only ActionIUs) interact with the GreifarmController, a logical

model of the domain that is visualized by the GreifarmGUI (as in Figure 5.15).
In the system, the tasks of running iSR, handling incremental hypotheses, turn-

ing words into actions, executing actions, storing domain data, and visualizing the
domain are thus realized in separate, modular components with clearly de�ned inter-
faces. As a result, implementing the incremental two-dimensional positioning engine
presented in (Baumann et al. 2013) was a matter of replacing the domain controller
and visualization components, and only slightly extending the NLU for the additional
action types up and down.

5.6.5 Evaluation

A small-scale evaluation was performed to compare di�erent iSR setups in three
variants of the system:
basic incremental the system uses all intermediate results of the basic iSR without

any optimizations,
standard smoothing the system uses iSR hypothesis smoothing as described in

Section 5.5 with a smoothing time of 150ms,
cost-based smoothing the system uses cost-based smoothing as described in Sub-

section 5.6.2, with a smoothing time of 0 for words with stop semantics, 200ms
for words with drop semantics, and 70ms for all other words.

A �rst experiment was performed to test whether game performance would depend
on the conditions. A game score was added to the game to which points are added if
the waste hits the recycle bin, subtracted if the target is missed, and which is decreased
by 1 every second (to account for task duration and to put a little pressure on the
user).
�e system was played by a single participant (not involved in the research), with

the smoothing condition randomly changing a�er every 3 rounds. In every round, the
start position of the robot and the position of the recycle bin where chosen randomly.
�e studywas limited to a single participant in order to avoid the possibly confounding
factor of interparticipant variation. A total of 72 games was played during the half
hour that the participant used the system. A statistical analysis shows that the game

133

5 Incremental Speech Recognition

score depended on the condition (ANOVA, F(2, 69) = 14.11, p < .005) and Tukey’s
range test shows that the basic condition is signi�cantly worse than the other two
conditions. �is means that iSR that employs a smoothing �lter (and hence is able
to smooth out false drop actions) performs signi�cantly better in the incremental
command-and-control task than raw iSR.
Tukey’s range test, however, also shows that there is no signi�cant di�erence in game

score between the standard and cost-based smoothing conditions. �is may be for
several reasons: �rstly, generic smoothing time was chosen to be quite conservative,
virtually eliminating false alarms for the drop action in both conditions. Secondly,
while the stop action does feel snappier in the third condition, there is still frequently
the need for corrective actions. �e iNLU component allows for di�erent strengths, so
that correcting an overshoot in the second condition is similarly expensive (in terms
of game score) as a smaller correction for the third condition. Finally, allowing three
rounds per condition probably allowed the participant to adapt to the condition’s
delay for the stop action.
Despite the fact that game score was similar for the two smoothing conditions, it

was possible to consistentlymeasure the timing di�erence: stop is recognized earlier
and drop is recognized slightly more reliably in cost-based smoothing than in regular
smoothing. A second experiment was hence conducted to test the absolute precision
of the stop action. �e same player from above played for another 15 minutes,
where the system was set to choose randomly among the two smoothing conditions
for every round, and tweaking the setting so that always a large distance had to be
covered between initial hand position and recycle bin (increasing the frequency of
stop actions). In this second experiment, there was still no signi�cant di�erence in
game score, but a Student’s t-test con�rms a signi�cant di�erence (t = 2.13, p < .05)
in the distances between where the stop action was executed and the recycle bin
position. �is indicates that the cost-based smoothing method leads to objectively
better positioning in the task. However, this better positioning does not necessarily
result in higher task performance (as measured by the game score).

5.7 Summary and Discussion

�is chapter evaluatedwhether incremental speech recognition is possible andwhether
it fares well in the relevant dimensions of incremental evaluation (timeliness, cor-
rectness, and diachronic evolution). Both these questions can be answered positively,
with iSR providing words with little delay a�er they have been spoken (and o�en
with a �rst guess while the word is still in progress). Additionally, incremental �l-
tering techniques can be applied to reduce the otherwise intolerably high amount

134

5.7 Summary and Discussion

of jitter (hypothesis changes that trigger reprocessing for consumers of incremental
hypotheses) to a reasonable amount.
�is chapter also investigated the applicability of the metrics developed in Chap-

ter 3 and found their results to be stable across a range of variations of setups, and to
similarly apply to the slightly di�erent task of n-best processing. An example appli-
cation showed that incremental speech recognition renders interactive command-
and-control tasks possible that would be hard to achieve without it. (In fact, a much
simpler command-and-control task based purely on incremental prosody processing
was described by Soeda and Ward (2001); it was described as little intuitive to use
and only allowed a very reduced form of interaction.) In the example application,
incremental speech recognition allows for well-timed action execution in a highly
interactive environment and this has recently been shown to carry over to more
complex domains (Baumann et al. 2013).
�e example application also showed that the smoothing method is e�ective to

improve application performance as it reduces the jitter associated to iSR that can
be detrimental if actions are performed on the basis of intermittent (and wrong)
hypotheses. A simple form of cost-based smoothing that takes into account the costs
of misrecognition was shown to result in more precise positionings, however could
not signi�cantly outperform standard smoothing in the application. It has previously
been shown that dialogue is robust to errors (Schlangen and Fernández 2007) which
explains why a better �ne-positioning not necessarily leads to better game scores.
�e use of modi�er words for corrective actions provided an attractor that prevented
small positioning errors to have large e�ects. However, as outlined in Chapter 2.1.3,
dialogue is non-linear. and small errors may as well result in large e�ects in other
systems (e. g. if cost-based smoothing were further improved to o�en make corrective
actions unneccessary).
More advanced demonstrations built on iSR will be presented in the next chapter

and have been described elsewhere (Baumann and Schlangen 2011; Baumann et al.
2013; Buß, Baumann, and Schlangen 2010) and by others (McGraw and Gruenstein
2012; Selfridge et al. 2012a).
Recently, the slightly extended version of incremental hypothesis smoothing (using

machine learned classi�ers trained on large amounts of data to estimate hypothesis
stability) by McGraw and Gruenstein (2012) has been integrated into Google Voice
Search (Ian McGraw, p. c. at Interspeech 2012). �us, optimized iSR is now available
on any Android device and is used by millions every day. Comparisons to the market-
leading intelligent personal assistant Siri (which runs non-incrementally) show the
productivity gains that iSRmakes possible.17

17For an example see http://vimeo.com/52497584.

135

http://web.archive.org/web/20130201050410/http://vimeo.com/52497584

5 Incremental Speech Recognition

�e notion of stability of InproTK so far (and that of the IUmodel in general), is
purely binary: IUs are committed or not. Stability changes gradually, so that sending
update messages (e. g. to inform a consumer that an IU will not be revoked with a
certain probability) would not be a good extension. Instead, WordIUs could be ap-
pended with an additional (real-valued) operation to indicate their stability estimate;
consuming modules could then base decision on the stability, or might be able to
register listeners that �re at certain stability levels. Furthermore, the current imple-
mentation ignores whether an IU is part of the ‘undisputed’ part of the search beam:
commits only ever happen when recognition has �nished. �e method of Brown
et al. (1982) should be added to allow for early commitment when it is guaranteed to
honour the yieldingness criterion.
Razik et al. (2008, 2011) have worked on on-the-�y con�dence measures, which,

in a sense, are similar to stability estimation in incremental speech recognition. A
thorough comparison of incremental stability and ASR con�dence (including the in-
cremental computation ofASR con�dence) would be a valuable contribution for future
work, especially when combined with incremental lattice/tree-based hypotheses.

�e fact that considering n-best hypotheses does not fundamentally improve word
timing highlights the limitation of the employed recognizer to only fully support the
operation on full words at a time. It might be worthwhile to consider approaches to
iSR based on di�erent approaches to ASR instead. If, for example, sub-word units
are available from ASR, these could be used to derive partial syntactic or semantic
information even before the full word becomes available. Similarly, if high-level
components ‘understand’ and license certain words (or phenomena) this could be fed
back to the search process (as in Wachsmuth, Fink, and Sagerer 1998). As a further
example, many users used lengthening (“riiiight”) in the positioning task in the
example application (at least when interacting with the wizard). While the speech
recognizer might have to be fundamentally re-organized to accommodate for this
behaviour, handling this use-case would contribute to more natural interaction in
highly interactive environments.
�e speech recognition task is a special formof sequence classi�cation (the sequence

of audio frames is classi�ed as one of the word sequences allowed by the language
model). Recently, theoretical work on the reliable early classi�cation of time series
(Anderson, Parrish, and Gupta 2012; Anderson et al. 2012; Xing, Pei, and Yu 2009)
has emerged, which, however, has not yet been considered in the analysis of iSR.
Investigating whether incorporating this theory can improve iSRmust be le� as an
opportunity for future work.
Finally, the problems that iSR faces are similar to other incremental handling

of input modalities (such as gaze, gestures, etc.). It would be interesting whether
properties are similar enough so that similar methods (such as hypothesis smoothing)
would help these modalities as well.

136

Reproduced with kind permission by André POLOczek, www.polocartoon.de.

www.polo-cartoon.de

6 Short-Term Estimation of Dialogue Flow

�eprecedingChapter 5 has shown that incremental speech recognitionworks: results
are reasonably correct, produced reasonably early (o�en a word can be hypothesized
while it is still ongoing), and if hypotheses are too unstable (i. e. change too o�en) for
some task, optimization methods exist to improve the situation at the cost of some
timeliness.
Chapter 2 argued that interaction in dialogue relies heavily on the timeliness of

feedback exchanged between the interlocutors. �e example application in Chap-
ter 5.6 showed that iSR can help to realize direct feedback in the form of immediately
performed system actions, resulting in highly interactive behaviour. However, the
application shown did not deal with full dialogue: the system feedback was purely
visual and the task was simple command and control. �e focus was on reacting as
early (and at the same time reliably) as possible.
However, immediate reaction is not desirable in all situations. For one, dialogue

is organized in turns and only some non-disturbing feedback is licensed while the
speaker’s turn is ongoing (Clark 1996); secondly, some contributions may require
precise timing when they co-occur during an ongoing turn (such as speaking in
synchrony a word, co-completing an utterance, or – at least this is the author’s impres-
sion – giving verbal or mimic feedback). It is evidenced by the turn-taking system,
which is the major organizational principle in dialogue, that reacting as quickly as
possible is o�en simply considered improper behaviour. Instead, it is necessary to
�nd opportunities in the dialogue where reactions can be inserted. Conventional
dialogue systems have the crude approach to rely solely on the fact that a user has
stopped speaking for a certain amount of time to determine that the turn has ended,
and only then start to output a system turn (which the system then outputs without
being able to adapt its turn).
�is chapter approaches turn-taking as a negotiation task that depends to a high

degree on well timed behaviour. Post-hoc analyses of when a user turn was over are
of little interest to an incremental dialogue system; instead, turn-taking needs to be
managed incrementally and on the sub turn level and it is the prediction of upcoming
turn-taking relevant events that the turn-management system must be concerned
with. �e turn-taking management system is not just required to operate in the
vicinity of turn-changes but needs to continuously monitor whether turn-changes
are occuring, and to initiate a turn-change at a desirable place in the user’s speech
if the system decides to grab the turn, To re�ect the fact that turn-taking decisions

138

are never clear-cut but rather are considerations on a continuous scale, the chapter
uses the term �oor tracking to describe the task of estimating when a user turn is
over, or when a user starts to speak, that is, who owns the �oor and to what degree.
Furthermore, this task will be extended to dialogue �ow prediction, that is, not only
determining upcoming �oor changes but also the timing behaviour of other events,
such as the timing of individual words spoken by the user.
Owing to the complexity of modelling turn-taking, there is a vast area of related

work. Ferrer, Shriberg, and Stolcke (2002) repeatedly query decision trees to decide
whether an ongoing pause should be considered the end of a turn and a combined
turn-taking model of both user and system was introduced by Raux and Eskenazi
(2009). Schlangen (2006) started the move from determining the end of a turn post-
hoc to predicting it, and Atterer, Baumann, and Schlangen (2008) showed that zero-lag
predictions are possible to detect the end of an utterance; Ward, Fuentes, and Vega
(2010) present a model of turn-taking which estimates the remaining duration of a
currently ongoing turn.
Most of the experiments cited above were conducted in o�ine experiments (Raux

and Eskenazi 2009 being the notable exception), which do not directly show that
better turn-taking results in better systems. In the system by Raux and Eskenazi
(2009), the polling frequency (i. e. the frequency at which the system determines
turn-changes) is �ve times a second. �us, on average, a decision is deferred by
100ms that is spent waiting for the system to re-determine turn-taking state. �e
work presented here will again use a centi-second frequency, as for updates to iSR
results, and present the integration of dialog �ow estimation into incremental spoken
dialogue systems.
�is chapter takes two steps towards more incrementally interacting spoken dia-

logue systems, �rstly aiming to react to turn-taking opportunities su�ciently quickly
to support a collaboration on utterances, and secondly extending from reaction to
prediction, and from turn-taking to continuous monitoring to allow to speak in
synchrony with the user.
Section 6.1 describes the InproTK �oor tracking component which is used for

(multi-modal) sub-turn level contributions to utterances. An example application in
Subsection 6.1.2 shows how an incremental system that employs the �oor tracking
component in a multi-modal collaboration on utterance tasks outperforms a non-
incremental baseline system.
Section 6.2 extends the estimation task in two dimensions: (a) from predicting

the remaining time of contributions/turns (as in Ward, Fuentes, and Vega 2010)
to determining the remaining times of all words spoken by the user, and (b) from
reacting to an event as quickly as possible to acting synchronously to the event. An
example application in Subsection 6.2.6 shows that predictions are su�ciently precise

139

6 Short-Term Estimation of Dialogue Flow

and can be made su�ciently early to speak in synchrony a user’s words. �is shows
that end-to-end incremental processing is possible without any noticeable delays.

6.1 Floor Tracking in INPROTK

�is section describes the �oor tracking component that is part of InproTK and
which was �rst introduced in (Buß, Baumann, and Schlangen 2010).�ere are several
arguments in favour of establishing a separate component for the �oor tracking task
(instead of integrating this capability into one of the other components) which will
be dealt with in turn:
�e integration of a classi�er for adaptive voice activity detection timeouts as

in (Ferrer, Shriberg, and Stolcke 2002) or similar means into the iSR component
could inform the dialogue manager (indirectly) via commit edits in the IU model.
However, this only works when �oor tracking events should always coincide with
utterance endings. If �oor tracking events should be registered within hesitations
during utterances, it is vital to not interrupt speech recognition (which, at least in
InproTK, would reset language model probabilities), even though words following a
hesitation strongly depend on the words preceding it (and hesitations can even occur
during words). Secondly, overloading commit edits with �oor tracking semantics
would prevent the iSR from revoking and changing hypotheses in the vicinity of
hesitations where ASR errors appear to occur more o�en.
Potentially, the dialogue manager (DM) has the best overview over the dialogue

and could additionally perform the �oor tracking task, for example using classi�ers as
in (Raux and Eskenazi 2008, also for endpointing). However, incremental processing
already introduces additional complexity into the dialogue manager and the ideal
mode for incremental processing in the DM are yet to be found. �us, a separate
�oor tracking module helps to keep the dialogue manager simple and can be re-used
across di�erent DM implementations.
Finally, the bene�t of including othermodules’ data into the �oor tracking decisions

(as in Atterer, Baumann, and Schlangen 2008) indicates that �oor tracking is in fact a
task that is di�erent enough from speech recognition and dialogue management that
it warrants a separate module in the system (even though such advanced processing
is not currently implemented).
�e �oor tracking component in InproTK indicates the user’s speaking state based

on user input (including prosody) and system state. �e �oor tracker informs compo-
nents (i. e. the dialogue manager) about anticipated events using signals as described
in the following subsection. An interactive system with multi-modal output that uses
the component for collaborative utterance construction is a�erwards described in
Subsection 6.1.2.

140

6.1 Floor Tracking in INPROTK

Speech Recognition

Dialog Manager

Language Understanding

Speech Synthesis

Action Manager

w
or
ds

D
A

speech

w
ords

D
A

speech

Floor Tracking

S:

U:

si
g
n
al
s

words

prosody

RNLA

Figure 6.1: System architecture of the Pentomino Select System. �e �oor tracking
component receives rich input from the recognizer (and potentially from
other modules) and interacts with the dialogue manager through signals
about current, upcoming and planned speaker changes. (Dashed arrows
indicate possible information �ow that is, however, not implemented in
the current system.)

6.1.1 Architecture and Implementation

�e �oor tracking component takes a central position in the system architecture, as
can be seen in Figure 6.1, making use of the fact that IU modules in InproTK are
not limited to pure pipelines but can form acyclic graphs. �us, it is trivial to pass
on iSR results to the �oor tracker (and it would be easy to extend input to also cover
e. g. understanding or output production). Communication with the DM uses signals
to account for the fact that turn-taking events do not evolve incrementally and IUs
would not be a �tting data structure. Additionally, communication using InproTK’s
inter-module communication based on shared bu�ers (cmp. Section 4.2.1) would
lead to cyclic (and bi-directional) module graphs, resulting in control-�ow issues.
�e DM informs the �oor tracker about high-level expectations about the dialogue

progression (e. g. user should start speaking soon, user should be interrupted if
possible, system should not react to a barge-in, . . .) and based on these demands the
�oor tracker sends signals when the �oor state changes accordingly. (For example, the
user did not begin speaking within an expected time span). �e task of determining
when to take a decision (in a temporal sense) is thus completely factored out of
the dialogue management component (by reducing it to a meaningful inventory of
signals), greatly simplifying its implementation.

141

6 Short-Term Estimation of Dialogue Flow

�e �oor tracker currently implements end-of-turn (or sub-turn) decisions and
time-outs only, as these are the only requirements for the example application in the
following subsection. However, the general architecture should be �exible enough to
allow for additional decision making input and signalling capabilities.
�e �oor tracker internally implements several (customizable) rules that set up

timers which, when they run out, send out corresponding signals to the DM. If a rule
ceases to apply before the timer runs out, it is aborted. �e central timer facility in
the �oor tracker complements nicely the otherwise purely event-based processing
in InproTK (which, in general, is not well suited to reacting to no event, such as a
time-out, or delayed reactions). No-input time-outs can be registered directly by the
DM when it expects the user to start speaking within a certain time-span.
End-of-turn rules are triggered whenever silence is incrementally recognized by

iSR1, that is, at the end of any inter-pausal unit (IPU). A simplistic decision rule
is implemented that is meant to capture trial intonation based on the pitch track
during the word preceding the silence (i. e. the potentially phrase-�nal word).2 �e
implemented �oor tracker supports two di�erent timers, a shorter for rising pitch
(to capture trial intonation quickly) and a longer timer for non-rising pitch (to not
interrupt early on hesitations). �e IPU-�nal word is queried for its pitch marks
(which reside in the base data store associated to the word) and a linear regression of
the fundamental frequency curve is calculated. �e slope of this regression (in semi-
tones per second) is used to classify the phrase-�nal intonation as rising/non-rising.
To handle iSR jitter and to allow for iSR results as stable as possible, pitch analysis is
only performed when the �rst timer runs out, thus considering and integrating all
changes of the iSR result until then.

6.1.2 Example Application: Collaborating on Utterances

�e �oor tracking component was put to use by Buß, Baumann, and Schlangen (2010)
in a system that collaborates with the user in developing their utterances. In human-
human dialogue, utterances are o�en shaped not only by the speaker but also by the

1iSR is a relatively coarse method for silence detection and the acute reader may notice that timing
evaluations in Chapter 5 explicitly excluded silence timings. In fact, analysis of the OpenPento WOZ
corpus shows that FO for silences is signi�cantly (p < .001) later than for words; the median FO for
silences is 300ms.
�e �nal system presented below used a smoothing factor of 10, incurring an additional 100ms

delay. However, the smoothing delay is known beforehand, and the pause’s duration can be subtracted
from the timer. (Pauses have a median duration of 200ms when they are added.) �e bottom line is:
timers should be set 200ms shorter than the desired level and timers shorter than 200ms may be late.

2�is rule is only meant to approximate turn-taking and back-channel inviting cues which are far
more varied (Gravano and Hirschberg 2009; Gravano and Hirschberg 2011), and should be covered in
more depth (Atterer, Baumann, and Schlangen 2008) in full systems.

142

6.1 Floor Tracking in INPROTK

addressee: for example, the speaker of a referring expression may monitor whether
the addressee appears to be understanding and adapt his utterance accordingly. One
of the devices used for this are try markers (Sacks and Scheglo� 1979), “questioning
upward intonational contour[s], followed by a brief pause.” Trymarkers are an e�cient
solution to the problem posed by uncertainty on the side of the speaker whether a
reference is going to be understood (Clark 1996).�is check for understanding works
in situ within a tight feedback loop (Buß, Baumann, and Schlangen 2010).
Conventional SDSs cannot realize the close coupling that is necessary between

input and output for utterance collaboration to work; especially, the di�erent reactions
based on understanding status (i. e. grounding at level 3 in terms of Clark 1996) require
incremental semantic and pragmatic understanding. �e example system presented
here informs about its understanding immediately if this can be performed visually
(similarly to Aist et al. 2007b) or verbally, using short feedback utterances/back-
channels to evoke a continuation with the information necessary to solve the task,
as soon as appropriate (i. e. when the user pauses). �e delay for feedback depends
on whether a try marker is recognized or not, similarly to (Skantze and Schlangen
2009), which, however, was limited to grounding at level 2 in terms of Clark (1996).
Of course, whether one sees the “collaboration on utterances” just described as the

reactions during one utterance (that includes pauses), or as a quick progression of
several utterances (or even turns) does not make any di�erence. �e point lies in the
di�erentiation of behaviour across intonation and degree of pragmatic completeness
of the speaker’s contribution and only shows that the term “turn” is somewhat blurred
by these phenomena.

6.1.2.1 Domain and Setup

�e domain of the system (as presented by Buß, Baumann, and Schlangen 2010) is the
manipulation (selection/deletion) of Pentomino puzzle pieces. �e user is shown a
game canvas with several Pentomino pieces and a goal state where one piece is either
selected or marked for deletion (as shown in Figure 6.2). �e user’s task is to order
the system to select (or delete) the corresponding puzzle piece. �e cursor changes its
shape/moves to a corresponding piece as soon as the system has identi�ed the action
to be performed, or the referred puzzle piece, respectively.
Human-human recordings had been performed in a more complex variant of this

domain (Fernández et al. 2006) and indicated the frequent use of “packaging” of
instructions, immediate visual feedback, and back-channel feedback, o�en in con-
nection with try markers (↗), as shown in Example 6.1 (adapted from Buß, Baumann,
and Schlangen 2010):

143

6 Short-Term Estimation of Dialogue Flow

goal state game state cursors

1.

2.

3.

4.

5.

Figure 6.2: �e domain of the Pentomino Select System. �e user’s task is to make the
system change the game state (shown in the middle) to re�ect the given
goal (shown at the le�). �e system gives immediate visual feedback by
changing the cursor on the game canvas; possible cursor states are shown
on the right.

(6.1) IG-1: �e cross in the corner↗
IF-2: hmm
IG-3: the blue one↗
IF-4: moves cursor
IG-5: yeah,
IG-6: delete that.

Another data gathering with simulated human-machine interactions was per-
formed and con�rmed the behaviour described above: instruction givers would
o�en solicit feedback (e. g. using try markers) and instruction followers display their
understanding by performing (sub-)actions required for the task.
�us, the implemented system focuses on reacting quickly to intra-utterance hes-

itations (with speci�c handling of trial intonation), immediate execution of visual
actions, and taking these into account when resolving displays of understanding.
At the same time, the micro domain (in the sense of Edlund et al. 2008) is limited
to a single dialogue state, and, aside from feedback utterances, only requires short
opening and closing utterances. �e settings (pieces shown on the board) in the
experiments are designed to make complex and underspeci�ed references likely (e. g.
by distractors, such as the yellow cross in Figure 6.2).

144

6.1 Floor Tracking in INPROTK

�e dialogue manager that takes decisions based on partial understanding results
using an incrementalized question-under-discussion approach (Ginzburg 1996), the
uni�cation-based language understanding component that provides these from iSR,
and the action manager that decides what should be uttered and what should be
performed visually are not part of this thesis. �ey are described in detail in (Buß,
Baumann, and Schlangen 2010; Buß and Schlangen 2010). Visual actions are always
performed immediately (but the cursor takes a moment to reach puzzle pieces as
its speed is limited); in contrast, verbal actions only occur a�er a timer in the �oor
tracker runs out. Timers were set in some informal trials. �e time-out is 200ms
for pauses a�er rising pitch and for non-rising pitch the time-out is 500ms (these
reaction times are similar to the rules used by Skantze and Schlangen 2009).

6.1.2.2 Experiment and Results

Evaluating the contribution of one of themanymodules in an SDS is di�cult as system
performance and user perception can be dominated by a single module performing
badly (Walker et al. 1998). �e system, at time of testing, su�ered from bad ASR

performance with some speakers, and occasional system instability (most likely
related to concurrency issues which have since been resolved). To be able to focus
the evaluation on the incremental dialogue strategies (immediate visual feedback,
quick turn-taking when possible), an overhearer evaluation was performed, where
participants rated the quality of the system based on observed interactions with the
system (played to them as videos).3
A non-incremental system that reacted (visually and verbally) a�er a time-out of

800ms (comparable to typical settings in commercial dialogue systems) was used as
a baseline for the incremental system as described above.
Two players (familiar with the system internals) recorded 30minutes of interactions

with the two versions of the system (with systems being changed randomly). 10%
of the recordings were classi�ed as “outlier” interactions, that is, interactions with
technical problems, or severe speech recognition failures. �e selection process was
meant to be fair to both system versions and excluded similar numbers of interactions.
�us remained 51 interactions with the incremental and 46 with the non-incremental
system.
�e distribution of the durations of interactions for both systems is shown in

Figure 6.3. �e durations between the two conditions di�ered signi�cantly (t-test,
p < .005) with the incremental system resulting in interactions that were on average
3.5 s (or 35%) shorter. �e faster task duration for the system that collaborated in
utterance construction was to be expected as the immediate reactions allow the system

3A similar approach was also used by Aist et al. (2007b) to test their incremental system.

145

6 Short-Term Estimation of Dialogue Flow

incremental
system

non-incremental
system

 0 5 10 15 20 25 30 35

time in seconds

Figure 6.3: Box plots showing the task durations for the non-incremental system and
incremental system (which collaborates on utterance construction).

to �nish its actions more quickly (execution time is folded into the delivery time of the
user utterance); faster behaviour for incremental systems vs. non-incremental systems
has also been shown multiple times in the literature (e. g. Aist et al. 2007a; Skantze
and Schlangen 2009). However, an incremental system that interacts di�erently than
its non-incremental counterpart is by no means guaranteed to outperform it: the
tight feedback loop of the incremental version could result in systematically more
understanding/interaction problems between the system and user. Utterance collab-
oration and tight feedback do not seem to have a negative impact in the Pentomino
Select System.
In the overhearer experiment, 8 participants (university students, not involved

in the research) were presented a total of 36 of the interactions (chosen randomly
and balanced between both conditions and speakers) as video recordings. �e �rst
two interactions were used for the participants to get to know the task and were not
evaluated. �e participants rated the interactions (directly a�er watching each video)
for success (used as a control question), helpfulness, human-likeness, and reactivity
on a seven-level Likert scale.
�e control question (success of the interaction) was given consistent marks by

all participants. (It turned out that one user had actually chosen the wrong piece, as
compared to the goal state, in two videos; this was noticed by all participants in the
evaluation.) Both human-likeness and reactivity were rated signi�cantly higher for the
incremental version (Wilcoxon rank-sum test, p < .05 and p < .005, respectively); the
di�erence in the mean ratings was 0.59 and 0.69 scale points. �e e�ect on helpfulness
did not reach signi�cance (p = .06) and the e�ect size was smaller (0.52 scale points).

146

6.2 Micro-Timing Prediction

6.1.3 Discussion

�is section described the �oor tracking component that is part of InproTK. Actions
based on the quick determination of the end of a turn are relatively uninspiring from
an an incremental systems developer’s point of view: when the user stops speaking,
any non-incremental systemwill come upwith a result as well. Incremental processing
can only help to take turn-taking decisions somewhat more quickly (e. g. Raux and
Eskenazi 2008), but this does not change the interaction paradigm itself: the ping-
pong game is only sped up, but it remains a ping-pong game.
Floor tracking is more interesting when used for the “collaboration on utterances”

where the terms phrase, utterance, and turn meld, as they are co-determined by both
speaker and listener. �e �oor tracker in InproTK tries to facilitate working with
these less strict distinctions.
�e �oor tracker as currently implemented is in some respects very basic, as it

simply uses two time-outs and one prosodic rule. Its strengths lie mainly in the
integration into the modular incremental architecture. Also, it should be conceptually
easy to extend it with more advanced notions of turn-taking management (e. g.
Raux and Eskenazi 2009; Ward, Fuentes, and Vega 2010) to improve �oor-tracking
capabilities, as well as the model to be described in the next section which is currently
not integrated into the �oor tracker.
�e example application goes beyond the systems by Aist et al. (2007b), which fo-

cused on visual feedback alone, and Skantze and Schlangen (2009), which focused on
spoken feedback in a semantically empty domain, and shows incremental behaviour
that was rated favourably and resulted in faster interactions, despite the simplicity of
the implemented �oor tracker.
One observation from the user interactions is that system reactions o�en occur

‘too early’ (at least in a technical sense): many words are recognized before the word
has been completely spoken and (visual) reactions are started not in relation to the
word’s beginning or end (or stressed syllable or any other property of the word)
but only in relation to when iSR hypothesized them. While this is acceptable for
visual reactions (that do not need to be perfectly aligned to a speaker’s words), this
is probably insu�cient for concurrent spoken output (e. g. feedback utterances that
are plausible to occur even if the user does not pause and should be aligned to the
speaker’s rhythm). �e next section concerns itself with timing estimation that can
be used for the precise timing of system actions.

6.2 Micro-Timing Prediction

One aspect of incremental speech recognition is that words are o�en recognized
before they have been completely spoken (cmp. Chapter 5) and the previous section

147

6 Short-Term Estimation of Dialogue Flow

has raised the problem that actions grounded in such words may be executed too early.
Speci�cally, the timing of the action depends on the timing of the recognition process,
whereas ideally, it would depend on the timing of the word itself. �is section, based
on (Baumann and Schlangen 2011), introduces the task of micro-timing prediction,
that is, predicting the temporal di�erence between when a word is �rst recognized
and when it will actually end. �is end-of-word (EoW) prediction generalizes the
task of predicting the end-of-turn (EoT) that was treated in this chapter so far, to
determining the timing of individual words while they are uttered by the speaker.
EoW prediction can even be extended to predicting the timing of upcoming speech,

words that the user doesn’t even have started to speak so far. �is may seem extremely
di�cult, but humans master this task when they speak in synchrony, shadow, or
co-complete someone else’s turn. Speaking in synchrony was chosen in this section
as a test case for small-scale micro-timing prediction. It can be seen as the holy
grail of end-to-end, real-time incremental spoken dialogue, as synchronous speech
requires that all timing delays in the system are balanced by corresponding predictive
processing in other modules. �is section sets out to show that real-time end-to-end
incrementality is feasible for a spoken dialogue system (at least in some situations,
and here again ignoring the challenges on ‘higher’ reasoning layers).
Subsection 6.2.1 motivates further the need for micro-timing prediction in highly-

interactive systems and Subsection 6.2.2 discusses some work related to the co-
verbalization task. Subsection 6.2.3 details how the micro-timing component �ts into
the overall system architecture and Subsection 6.2.4 details two prediction/estimation
models for micro-timing. �e estimators are evaluated in Subsection 6.2.5 and an
example application is presented in Subsection 6.2.6 which shows that the system
achieves the goal of real-time end-to-end incrementality.

6.2.1 Motivation for the Task

Turn co-completion, that is, speaking in synchrony a user’s ongoing utterance, can be
considered an ideal test-case of just-in-time incremental spoken language processing,
as it requires that all levels of language understanding and production are carried out
in real time, without any noticeable lags and with proper timing and even with the
ability to predict what will come, to counterbalance inevitable internal delays.
�e previous section has discussed that spoken dialogue systems, especially incre-

mental ones, have come a long way towards reducing lags at turn changes (e. g. Buß,
Baumann, and Schlangen 2010; Raux and Eskenazi 2009; Skantze and Schlangen
2009), or even predicting upcoming turn changes (Baumann 2008; Schlangen 2006;
Ward, Fuentes, and Vega 2010).
Compared to regular turn changes, where short pauses or overlaps occur fre-

quently (Weilhammer and Rabold 2003), turn completions in natural dialogues are

148

6.2 Micro-Timing Prediction

five six seven

decision point (the

current point in time)

System:

a) estimate

EoW

b) estimate

upcoming speech

five sixone seventwo three fourUser:

reference for

estimation

Figure 6.4: �e task: When noti�ed that the ongoing utterance should be completed
with “five six seven” a�er the word “four”, the �rst three words are used
to (a) estimate the remaining duration of “four” and to (b) estimate the
speech rate for the completion.

typically precisely aligned and prosodically highly integrated with the turn that is
being completed (Local 2007). With ever more incremental (and hence quicker)
spoken dialogue systems, the phenomenon of completion comes into reach for SDSs,
and hence questions of micro-timing during the turn become important.
While completing someone else’s turn – especially for a computer – may be con-

sidered impolite or even annoying, being able to do so can be a useful capability.
Some tasks where it might be helpful are negotiation training to induce stress in a
human trainee (DeVault, Sagae, and Traum 2009), or pronunciation aids for language
learners, in which hard to pronounce words could be spoken simultaneously by the
system.
Simultaneous speech occurs systematically, e. g. in greetings or when saying good-

bye, without being perceived as a problem (Lerner 2002). �ese situations are im-
portant sub-tasks in deployed spoken dialogue systems, as they set the scene for a
successful customer contact, and in�uence strongly the lasting impression of the
interaction, respectively. Higher success and naturalness may help to improve not
only the overall rating of the system, but can also help to improve the dialogue success
itself. A system should certainly not try to complete all or even many user turns, but
having the capability to do so means that the system has a very e�cient interactional
device at its disposal.
Another area where tight temporal integration may become important is simulta-

neous transcription or simultaneous interpreting (Rashid 2012). If translations are
already available (possibly from a given script) the system must be prudent not to
outrun the speaker that is being interpreted. Finally, monitoring the user’s timing, as
is required for the temporal prediction of turn continuations, can also be used for

149

6 Short-Term Estimation of Dialogue Flow

other conversational tasks such as producing back-channels that are precisely aligned
to the user’s back-channel inviting cues (Gravano and Hirschberg 2009), to enable
micro-alignment of turn-onsets, or to quickly react to deviations in the user’s �uency.
For example, if a system such as the one presented in the previous section notices a
dis�uency shortly a�er it initiated a (non-verbal) action, it might revert the action (if
it induced that the action is wrong), or decide to not initiate actions during the user’s
speech (if it induced that this disturbs the user).
�emicro-timing task is visualized in Figure 6.4: all the input that is available from

the user up to the current point in time (the decision point) is available for the system
to base its estimation on. �ere are then two sub-tasks that can be distinguished:
(a) the micro-timing predictor should be able to estimate the time remaining in
the currently ongoing word, and (b) the predictor should be able to estimate the
speech rate at which the upcoming speech is going to be uttered. Combined with a
component that predicts what the user is going to say, the system is able to speak in
synchrony to the user as it can output the words that the user will speak, aligned to
when the user will start speaking the words, and at the speech rate that the user will
use.

6.2.2 Related Work on Simultaneous Speech

�egeneral phenomenon of turn completion can be broken down into cases where the
completion is spoken simultaneously with the original speaker (turn sharing, Lerner
2002) and where the �oor changes in mid-utterance (collaborative turn sequences,
Lerner 2004; or split utterances, Purver et al. 2009). For the present purposes, a
di�erentiation between the two cases is not important, as both rely on the capacity
to speak with a high degree of prosodic and temporal integration (Local 2007). In
fact, it is beyond the system’s control whether the other speaker will stop uttering,
which would ‘split’ the utterance, or whether the turn is shared. �e system developed
below only deals with the question of when (and how) to start speaking and not the
question of whether the current turn owner will stop speaking.
Lerner (2004) distinguishes turn co-optation, in which a listener joins in to come

�rst and win the �oor, and turn co-completion, in which the completion is produced
in chorus. Both of these phenomena relate to the current speaker’s speech: either
to match it, or to beat it. �e focus is on matching in this work, but the methods
described similarly apply to co-optation.
As Lerner (2002) notes, attributing this view to Sacks, Scheglo�, and Je�erson

(1974), simultaneous speech in conversation is o�en treated exclusively as a turn
taking problem in need of repair. �is is exactly the point of view taken by current
spoken dialogue systems, which avoid overlap and interpret all simultaneous speech as
barge-in, regardless of content. However, Lerner (2002) also notes that simultaneous

150

6.2 Micro-Timing Prediction

a) live > rec-sync > rec-normal

b) rec-sync∼ rec-sync

no prosody > rec-sync

no segments > hiss

Figure 6.5: Ranking of factors in�uencing human synchronous speech performance
for various conditions, as found by Cummins (2009).

speech systematically occurs without being perceived as a problem, e. g. in greetings,
or when saying good bye (see also Clark 1996).
Two corpus studies are available that investigate split utterances and their frequency:

Skuplik (1999) looked at sentence cooperations in the Bielefeld Toy Plane Corpus (BTPS),
which is a corpus of task-oriented spoken German (Poesio and Rieser 2010), and �nd
3.4% of such utterances.4 Purver et al. (2009) �nd 2.8% of utterance boundaries in
the BNC (as annotated by Fernández and Ginzburg 2002) to meet their de�nition
of utterances split between speakers. �us, while the absolute frequency may seem
low, the phenomenon does seem to occur consistently across di�erent languages and
corpora.
Local (2007) describes phonetic characteristics at utterance splits (he calls the

phenomenon turn co-construction). He notices that they di�er from regular turn
handovers namely in their temporal alignment and close prosodic integration with
the previous speaker’s utterance. �e work presented here focuses on the temporal
aspects (both alignment and speech rate) when realizing turn completions, but leaves
out pitch integration to future work. Full prosodic integration would likely be hard to
evaluate numerically and would likely require more complex modelling than for the
temporal alignment, as implemented below.
Cummins (2009) analyses speech read aloud by two subjects at the same time

(which he calls synchronous speech) and presents an ordering of the in�uencing fac-
tors on the resultant degree of synchrony (measured by dynamic-time-warping, DTW

costs). As shown in Figure 6.5 (a), synchrony is (slightly) better in a live setting
than with a subject synchronizing to a recording of speech which was itself spoken

4�e exact number of utterances split between speakers (“sentence cooperations”) in the BTPS is
not entirely clear: Skuplik (1999) as well as Poesio and Rieser (2010) report 126 sentence cooperations
among 3675 contributions in that corpus (exclusive of non-verbal contributions), Poncin and Rieser
(2006) report “at least 126” (Poncin and Rieser 2006, p. 737), and Poesio and Rieser (2004) give the
number of 160 sentence cooperations (4.3%), noting that “in most of them cooperation is other-
initiated (95%)” (Poesio and Rieser 2004, slide 8).

151

6 Short-Term Estimation of Dialogue Flow

in synchrony and this is easier than to a recording of unconstrained speech. Cum-
mins (2009) also experiments with reduced stimuli and the results are shown in
Figure 6.5 (b): unmodi�ed stimuli were synchronized to similarly as stimuli where
intonation information was removed by re-synthesizing at a �xed fundamental fre-
quency A carrier signal without segmental information (but including the original
f0-contour) fared worse than the above conditions, but was still synchronized to
signi�cantly better than when speaking to an uninformative hiss. (�e �rst sentence
of each recording was always le� unmodi�ed, allowing subjects to estimate speech
rate even in the HISS condition.) �us, pitch information does not seem necessary
for the task. However, it may help in the absence of segmental information. As pitch
information appears to be redundant to segmental information (at least for humans),
the approaches presented below ignore pitch and rely on segmental information only.
Cummins (2002) found that synchronous speech is simpli�ed in prosodic char-

acteristics, presumably to make it easier to synchronize with. Additionally, there is
no leader-follower relationship, but lead changes between speakers, indicating that
synchrony between speakers is achieved through feedback being exchanged and not
through one speaker locking in on the other. Finally, Cummins (2003) also found
that human performance for synchronous speech does not improve with (moderate
amounts of) practice.
�e work presented in this section relies on ‘higher-level’ incremental components

to form a meaningful turn completing application (or other application where syn-
chronous speech actually improves an application) and such components are being
developed: incremental understanding during a user’s utterance is well underway
(Heintze, Baumann, and Schlangen 2010; Sagae et al. 2009), as is decision making
on whether full understanding of an utterance has been reached (DeVault, Sagae,
and Traum 2009). Purver, Eshghi, and Hough (2011) even present an incremental
semantics component aimed explicitly at split utterances.
In fact, DeVault, Sagae, and Traum (2009) provide exactly the counterpart to the

completion timing component that is developed in this section, describing a method
that, given the words of an ongoing utterance, decides when the point of maximum
understanding has been reached and with what words this utterance is likely to �nish.
However, their system demonstration uses short silence time-outs to trigger system
responses (Sagae, DeVault, and Traum 2010). �e work presented here eliminates
the need for such time-outs, and their work would be an ideal replacement for the
‘dummy’ continuation component that is used (and described) below.

Finally, Hirasawa et al. (1999) present a study where immediate, overlapping back-
channel feedback from the system was found to be inferior to acknowledging informa-
tion only a�er the user’s turn. However, they disregarded the back-channels’ micro-
temporal alignment as explored in this study (presumably producing back-channels
as early as possible), so their negative results cannot be taken as demonstrating a

152

6.2 Micro-Timing Prediction

Speech Recognition

Completion

Predictor

Speech Synthesis

Action

Manager
w
or
ds

speech speech

Micro-Timing

S:

U:
words
w/timing

 predicted com
pletion

ti
m
in
g

words
w/timing

words

Figure 6.6: Data �ow in the co-completion system. �e micro-timing component
calculates the EoW timing from the (rich) iSR hypothesis (and also from
the predicted completion in the full version of the system). �e predicted
completion can then be timed to be spoken in synchrony with the user.

general shortcoming of the interactional strategy. Instead, they can just as well be
seen as highlighting the need for precise micro-temporal alignment of back-channel
feedback.

6.2.3 System Architecture

�e overall architecture of the co-completion system is shown in Figure 6.6. Words
from speech recognition are passed on to a completion predictor, which is a mock
implementation of the component presented by DeVault, Sagae, and Traum (2009) in
order not to duplicate their work: the completion predictor knows the full utterance to
be spoken (from a transcript �le) and aims to co-complete a�er every word spoken.
Some constraints were built into the prediction module that are meant to be represen-
tative of real implementations of such a module: it can only �nd the right completion
if the previous two words are recognized correctly and the overallWER is lower than
10%. (Coming back to Figure 6.4, if the system had falsely recognized “on two three”
instead of the correct “one two three”, no completion would take place: even though
the last two words “two three” were recognized correctly, theWER between “on two

three” and “one two three” is too high.)
�e central micro-timing component estimates the timing of the user’s words. �e

component is triggered into action when an iSR result arrives and the understanding
module signals that (and with which words) a turn should be completed. At this
decision point, the micro-timing component estimates (a) when the current word

153

6 Short-Term Estimation of Dialogue Flow

ends (EoW) and (b) how the user’s speech will continue, as was already shown in
Figure 6.4.
Both of these aspects of the user’s speech could be put to use in a variety of ways in

the action manager of the incremental spoken dialogue system. In the co-completion
system, the goal is to output the same words at the same time that the user will speak
them. Ideally, the system will start speaking the continuation precisely when the next
word starts and match the user’s speech as best as possible. �us, the component
must estimate the time between decision point and ideal onset (which will be called
holding time) and the user’s speech rate during the following words.
In order for the system to be able to produce a continuation (“five six seven” in

Figure 6.4) in time, of course the decision point must come su�ciently early (i. e.
during “four”) to allow for a completion to be ready in due time. �is important
precondition must be met by-and-large by the employed iSR. However, it is not a strict
requirement as the timing component’s estimated holding time should be negative if
iSR results are lagging behind. Depending on the estimated lag, a completion can be
suppressed or, if it is small, fairly good completions can still be realized by shortening
the �rst phoneme, or backing o� to setting in one or more phones or syllables later
(actually, back o� until the holding time turns positive). While initial shortening/
back-o� works for co-completion, it would probably be less adequate for feedback
utterances for which the onset timing may be critical.

6.2.4 Two Models for Micro-Timing

At the core of the micro-timing component is a duration model that is able to estimate
the timing of a word that is currently ongoing (or even for words that are about to be
spoken). Two strategies for the timing module have been implemented and will be
described in turn, a�er �rst discussing a simple baseline approach.

Baseline: Speak Immediately In the absence of a timing component, a system
will start speaking right away, whenever iSR recognizes a word. �us, for the task of
synchronous completions, completions will o�en already be output while the user
is still speaking the preceding word. �is seems to have been the strategy taken by
Hirasawa et al. (1999) for outputting back-channel utterances and the evaluation in
the next subsection will show that it is not very good.
Of course, performance of the baseline depends on the timeliness of the iSR, specif-

ically its FOword end. It was argued in Chapter 3 that iSR should be able to produce a �rst
hypothesis about a word before it ends (but may require to change that hypothesis).
As a result, the better the iSR, the smaller (possibly below zero) FOword end will be (which
is also indicated by Table 5.2 in Chapter 5). �us, a better iSR developed in the future
will make the baseline strategy even worse than it is today.

154

6.2 Micro-Timing Prediction

scale to match reference

one two three four

ø

Strategy 1: Estimating ASR Lookahead

Strategy 2: Analysis-by-Synthesis

five sixone seventwo three four

scaled TTS:

User:

TTS realisation:

System output: five six seven

five sixone seventwo three four

holding time correctly scaled output

five sixone seventwo three four

Figure 6.7: Our models to estimate holding time (when to speak), and speech rate
(how fast to speak; only Strategy 2).

Strategy 1: Estimating iSR Lookahead In the ASR-based strategy (illustrated in
Figure 6.7, top) the system estimates FOword end which can also be called its lookahead,
i. e. the average time between when a word is �rst recognized by iSR and the word’s
end in the signal. �is lookahead is known for the words that have been recognized
so far and the average lookahead can be used as an estimate of the remaining duration
of the word that is currently being detected (i. e. its holding time).

�e strategy just described, as well as the baseline strategy, only solve half of the
task, namely the end-of-word estimation (sub-task (a) in Figure 6.4). �is is su�cient,
for example, to generate temporally aligned feedback but is not su�cient to solve the
synchronous speech task as outlined above, which also raises the question of how to
speak (sub-task (b) in Figure 6.4).
Both sub-tasks can be solved simultaneously by estimating the speech rate of the

current speaker, based on what was already said so far, and considering this speech
rate when synthesizing the completion of the utterance.
Speech rate estimation using some kind of duration model thus forms the second

strategy’s main component. Work on duration models can be found in the context
of speech recognition, e. g. as a pre-processing step to perform model adaptation
(Pfau and Ruske 1996), or integrated with the ASR to improve performance (Johnson
2005), or as a post-processing step to re-sort N-best lists (Anastasakos, Schwartz, and
Shu 1995). In the ASR context, speech rate is o�en used synonymously with phone

155

6 Short-Term Estimation of Dialogue Flow

rate but P�tzinger (1998) shows experimentally that perceptual speech rate is more
closely correlated to a linear combination of phone rate and syllable rate than either
of the two alone. Text-to-speech synthesis systems employ duration models to assign
durations to the words and phones to be synthesized. Rule-based approaches (Klatt
1979) as well as methods using machine learning have been used (primarily CART,
Breiman et al. 1984; for a recent overview see: Lazaridis et al. 2010); for HMM-based
speech synthesis, durations are o�en generated from Gaussian probability density
functions (PDFs, Yoshimura et al. 1998). �is author is not aware of any work that
used duration models to predict the remaining time of an ongoing word or utterance
previous to (Baumann and Schlangen 2011).
In the present task, the duration model is needed to make estimations based on

limited input (instead of providing plausibility ratings as in most ASR-related ap-
plications). A simple approach to duration modelling could be based on average
phone durations. However, good estimates require context-dependent phone dura-
tion models. Data sparsity would be problematic and require some kind of backo� or
smoothing. Finally, phonesets between ASR and TTSmay di�er (they do here).
As it turns out, a TTS system in itself is an excellent duration model because it

potentially ponders all kinds of syntactic, lexical, post-lexical, phonological and
prosodic context when assigning durations to words and their phones. Also, the
task of collaborative completion already involves a TTS system to synthesize the
turn completion – in the present case MaryTTS (Schröder and Trouvain 2003).�e
durations can be accessed in symbolic form in MaryTTS’s XML format (Schröder
and Breuer 2004), and the system allows to manipulate this information prior to
acoustic synthesis. Depending on which voice is used, MaryTTS uses machine-
learned duration models (CART or PDFs) or an optimized version of Klatt’s (1979)
rules which have been shown to perform only marginally worse than the CART-based
approach (Brinckmann and Trouvain 2003).

Strategy 2: Analysis-by-Synthesis As just described, this second strategy employs
the TTS’ duration model in an analysis-by-synthesis approach, as illustrated in Fig-
ure 6.7 (bottom): when triggered to complete an ongoing utterance, the TTS is queried
for the durations it would assign to a production of the predicted full utterance, i. e.
the pre�x that was heard plus the predicted continuation of the turn. (In Figure 6.7,
the TTS would be queried for the complete utterance “one two three four five six

seven”.) In that way, the TTS can take the full utterance into account when assigning
prosodic patterns which may in�uence durations. �e model then computes the
factor that is needed to scale the TTS’s duration of the words already �nished by the
user (in the example in Figure 6.7: “one two three”) to the duration of the actual

156

6.2 Micro-Timing Prediction

utterance5 and apply this scaling factor to the remaining words in the synthesized
completion. �e expected duration of the currently spoken word can then be read
o� from the scaled TTS output and, by subtracting the time that this word is already
going on, indicates the holding time. Similarly, the completion of the turn which is
now scaled to match the user’s speech rate can be fed back to the synthesis system in
order to generate the acoustic waveform which is to be output to the speakers once
the system should start to speak.
�e MaryTTS’ duration model depends on the synthesis voice. �e experiments

(and measurements) reported below were performed with MaryTTS version 4.1.1 (the
current version at the time of the experiment), using the bits3hsmm voice (which
worked slightly better than other voices).

6.2.5 Evaluation

�emicro-timing prediction strategies were evaluated in a series of controlled o�ine
experiments (that is, not in the context of a live system that attempts to co-complete
live user utterances). �is subsection �rst describes the evaluation corpus and ex-
periment setup before the two subtasks – EoW prediction for the ongoing word, and
speech-rate prediction for the next word – will be evaluated in turn, and means to
improve these based on the estimated reliability of predictions are discussed.
�e evaluation methodology is simple as the predicted word timings can simply be

compared to the actual gold timing of the words. Gold word timings could either be
taken from (manual) alignments, or the �nal ASR output. Similar to the iSR evalua-
tion in Chapter 5, the ASR’s word alignments were used. A micro-timing predictor
that successfully predicts the system’s time alignment should be good enough, and
occasional small di�erences in ASR alignment (as compared to a manual alignment)
are likely irrelevant.
�e evaluation will then focus on the error distribution, that is the di�erence

between estimate and reality. Apart from the overall mean of that distribution which
indicates a bias of the system (and which would ideally be zero), the variance of
estimation errors (which indicates jitter) should be as low as possible. Jitter makes
the system unpredictable whereas a constant error might be easy to accustom to.

6.2.5.1 Corpus and Experiment Setup

Recordings of the German version of the story�e North Wind and the Sun (Aesop
1991; IPA 1999) from theKiel Corpus of Read Speech (IPDS 1994) are used as evaluation
corpus. �e story (including title) consists of 111 words and is read by 16 speakers,

5In a way, this extends P�tzinger’s (1998) speech rate measurements beyond phones and syllables
towards estimating against words in full context.

157

6 Short-Term Estimation of Dialogue Flow

giving a total of 1776 words in 255 inter-pausal-units (IPUs), altogether totalling about
12 minutes of speech. (In the following, “turns” will be equated with IPUs, as a corpus
of read speech does not contain true turns.) Words and phones in the corpus have a
mean/median/std dev duration of 319/290/171ms and 78/69/40ms, respectively.
�e evaluation supposes that every word within a phrase can be a possible comple-

tion point in a real system,6 hence the performance of the micro-timing component is
evaluated for all words in the corpus. �is gives a general picture of the micro-timing
capabilities, not restricting the results to the application in collaborative completions.
(�is generalization may have an in�uence on the results: real collaborative com-
pletions are sometimes invited by the speaker, probably by giving cues that might
simplify co-completion; if that is true, the version tackled here is actually harder than
the real task.)
Good turn completions (and good timings) can probably only be expected in the

light of high ASR performance. An acoustic model trained for conversational speech
was used which was not speci�cally tuned for the task and a domain-speci�c, overly
optimistic, language model was trained (based on the test corpus). �e resultingWER

is 4.2%.7 While the results could hence be considered too optimistic, the analyses
in Chapter 5.4.1 showed that incremental metrics are relatively stable in the light
of varying ASR performance, and – more speci�cally – the analysis in Figure 5.6
shows that this is especially true if timing metrics are considered only for words that
were recognized correctly (and only for these words completions are attempted). �e
author expects that lower ASR performance would not radically change prediction
quality itself; rather, it would have an impact on how o�en continuations could be
predicted, since that is based on correct understanding of the pre�x of the utterance,
limiting the amount of data points for the statistics.
While it is strictly speaking not part of the timing component, a precondition to

being able to speak just-in-time is to ponder this decision su�ciently early. Only if
ongoing words are hypothesized somewhat before they are �nished can a completion
be uttered starting from the next word. Figure 6.8 shows a statistic of when iSR
�rst hypothesizes a correct word relative to the word’s end (FOword end, which can be
determined post-hoc from the �nal recognition result) on the corpus. Most words
are hypothesized before their actual endings, with a mean of 134ms (median: 110ms)
ahead (these numbers are only slightly lower than the other, broader corpora examined
in Chapter 5). �is leaves enough lookahead to synthesize a completion and for some

6To allow some context for timing estimation, the �rst two words a�er a pause are not considered
for completion.

7WER only slightly increases to 5.9% when the optimistic model is interpolated (.6/.4) with a
language model for the Pentomino domain. �is robustness to the language model probably re�ects
the clear speaking style in the Northwind corpus.

158

6.2 Micro-Timing Prediction

 0

 5

 10

 15

 20

≤
 -0.48

-0.40
-0.32

-0.24
-0.16

-0.08
 0 ≥

 0.08

%

decision point relative to end of word (in seconds)

median (-0.11)

Figure 6.8: Distribution of FO relative to the word’s end (FOword end; determined post-
hoc) in the Northwind corpus.

delays that must be taken into account for input and output bu�ering in the sound
card, as well as synthesis delays, which together take around 50ms in our system.8
Interestingly, FOword end di�ers widely for the speakers in the corpus with means

between 97 and 237ms suggesting that incremental performance depends on the
overall interplay between iSR and speaker. As can be seen in Figure 6.8, some words
are only hypothesized a�er the fact, or at least too late to account for the inevitable
lags – a system, however, could still output a completion by adapting its beginning as
outlined above, if the timing component successfully estimates the delay.

6.2.5.2 End-of-Word Prediction: When to Start Speaking

�e two micro-timing strategies are evaluated by comparing the predicted EoW
with the actual EoW.�e mock completion predictor described in Subsection 6.2.6
is limited to generating micro-timing results only if the previous two words were
recognized correctly and the overallWER is lower than 10%. Under these constraints,
the micro-timing component generated data for 1100 IPU-internal and 223 IPU-�nal
words in the corpus.

8No special means were taken to minimize synthesis or sound card delays in the co-completion
system.

159

6 Short-Term Estimation of Dialogue Flow

Table 6.1: Descriptive statistics of the error distributions over estimated onset times
for di�erent duration models.

model
error distribution metrics (in ms)
mean median std dev MAE

baseline: all -134 -110 107 110
baseline −µ 0 23 107 63

ASR-based : all -2 19 105 60
IPU-internal 26 33 82 51

IPU-�nal -148 -143 87 142

TTS-based : all -3 4 85 45
IPU-internal 12 11 77 41

IPU-�nal -78 -76 83 79

�e main target of this section is turn co-completion and completions can only
take place if there is something le� to complete (i. e. only a�er turn-internal words).
However, the micro-timing models attempt to be useful more generally. For example,
being able to predict the duration of turn-�nal words is important for tightly integrated
speaker changes. For this reason, EoW estimates for both turn-internal and turn-�nal
words were included in the analyses, as well as for all words in combination.
Figure 6.8 can also be taken as depicting the error distribution of the baseline

strategy which starts every completion immediately: on average, the completion will
be early by 134ms if it is uttered immediately and the standard deviation is relatively
high at 107ms (as shown in Table 6.1).
An unbiased baseline strategy can be obtained by always assuming the EoW to be

134ms (the global mean FOword end) away. While this results in a mean error of zero, the
variance of the distribution remains the same. Furthermore, this enhanced baseline
requires the global mean to be known in advance and is hence in�exible: the mean
may very well be di�erent for other data sets as it already di�ers between speakers in
the present corpus.
�e two micro-timing models’ error distributions are shown in Figure 6.9 and

the distributions’ mean, median, and standard deviation,9 as well as the median

9Mean and std dev are reported separately and describe bias and jitter, respectively. A combined
metric o�en used to describe error distributions is root mean squared error (RMSE). Notice that

RMSE=
√
µ2 + σ 2.

160

6.2 Micro-Timing Prediction

 0

 5

 10

 15

-0.3 -0.2 -0.1 0 0.1 0.2

%

EoW prediction error (in s)

IPU-internal words

 0

 5

 10

 15

-0.4 -0.3 -0.2 -0.1 0 0.1

EoW prediction error (in s)

IPU-final words

ASR-model
TTS-model

Figure 6.9: Error distributions for EoW prediction using the two models based on
ASR and TTS, respectively, for IPU-internal words (le�) and IPU-�nal
words (right). Box plots show quartiles (boxes) and 5%/95% quantiles
(whiskers).

absolute error (MAE10) are shown in Table 6.1. As can be seen in the table, both
strategies are similarly e�ective in predicting the average remaining time of a currently
uttered word, reducing the mean error close to zero, a signi�cant improvement over
starting a completion or next turn immediately (ANOVAwith post-hoc Tukey’s honest
signi�cance di�erences test). However, the two approaches do not di�er signi�cantly,
at least when looking at all words in the corpus together.
As evident in the table and as can be seen when comparing the le� and right part

of Figure 6.9, both methods’ bias in EoW prediction di�ers radically between IPU-
internal and -�nal words: it is positive for IPU-internal but negative for IPU-�nal
words (and in both cases, the TTS-based outperforms the ASR-based model). �is is
probably due to �nal lengthening: phones are about 40% longer in IPU-�nal words
in the Northwind corpus. Final lengthening is not modelled at all by the ASR-based
strategy and the lengthening may be stronger than what is predicted by the duration
model of the TTS that was used.11

10MAE is de�ned as the median error magnitude (ignoring its sign).
11�eune et al. (2006) notice longer pauses, particularly between sentences, for storytelling when

compared to newsreading, for which TTS systems are o�en optimized. Longer pauses might also lead
to stronger pre-�nal lengthening in the storytelling task.

161

6 Short-Term Estimation of Dialogue Flow

While the two approaches perform similarly when comparing the estimation bias
for all words, there actually are di�erences when looking separately at IPU-internal
and IPU-�nal words. In both cases the TTS-based approach has a signi�cantly lower
bias than the ASR-based approach (paired Student’s t-tests, p < .01).
A low standard deviation of the error distribution is probably even more important

than a lowmean error, as it is variability, or jitter, that makes a system unpredictable to
the user. While there is no signi�cant improvement of the ASR-based approach over
the baseline, the TTS-based approach signi�cantly outperforms the other approaches
(Browne-Forsythe’s modi�ed Levene’s test, p < .001) with a 20% reduction of jitter
down to about the average phone’s length.
Regarding human performance in synchronous speech, Cummins (2002) reports

an MAE of 30ms for the live (interactive) synchronous condition. However, MAE

increased to 56ms when synchronizing to an (unsynchronously read) recording, a
value which is in the range of the TTS-based system (which also uses unsynchronously
read speech).
�e TTS-based strategy, of course, requires a predicted completion for the utterance,

as the built-in durationmodel expects full utterances as input. In an experiment where
only the iSR input and no completion was fed to the TTS model, the overall mean
error was much higher (66ms; for IPU-internal words: 89ms) than for the ASR-based
or the full TTS-based strategies, indicating that in this case the TTS duration model
applied rules for �nal lengthening to every word. Jitter for this experiment was higher
than for the full TTS-based system, and similar to the ASR-based system.

6.2.5.3 Predicting the Micro-Timing of the Upcoming Word

�e EoW estimate from above can be directly used to determine the onset of a co-
completion, as the next word’s onset is identical to the end of the current word.
However, as explained in the task description, knowing when to speak is only one
side of the medal, as a turn completion itself must be integrated with the previous
speech in terms of duration, prosodic shape and loudness.
When evaluating how well a timing component predicts the following word’s

duration, that word needs to also be correctly recognized by ASR. �is holds for 1045
words in the corpus, for which upcoming speech alignment results are reported.
As co-completion can be performed word-by-word, the error distribution for each
upcoming word, as well as the error distribution of EoW for each upcoming word is
computed (which is simply the addition of EoWof the current word and the upcoming
word’s duration).

Only the TTS-based micro-timing model is capable of outputting predictions for a
future word; the ASR-based approach does not provide this information. However,
both duration and onset estimation together determine the error at the word’s end.

162

6.2 Micro-Timing Prediction

Table 6.2: Descriptive statistics of the error distributions for the upcoming word’s
micro-timing. �e onset is identical to the current word’s EoW (cmp.
Table 6.1) and combined with the estimated duration gives the error of the
upcoming word’s EoW.

task approach
error distribution metric (in ms)
mean median std dev MAE

onset
ASR-based model 26 33 82 51
TTS-based model 12 11 77 41

duration
baseline : word µ -20 -1 177 139
baseline : raw TTS 29 39 89 60
TTS-based model -5 4 75 45

combined ASR + µ baseline -11 -2 188 134
to end- ASR + TTS 25 30 100 81
of-word TTS + TTS 7 10 94 74

Hence, the error at the next word’s end for the TTS strategy’s duration estimate
combined with both strategies’ onset estimates is reported in Table 6.2.
Table 6.2 shows two simple baselines for predicting the next word’s duration: one

is to assume the average word duration in the corpus (mean 319ms in the Northwind
corpus); the other is to use the TTS’s word duration without applying the linear
scaling method.12 �e �rst baseline results in a very high jitter (σ = 177ms), while
the second baseline does not adapt to the average corpus speech rate, which is about
10% higher than the employed TTS’s default, resulting in a bias of 29ms. In contrast,
duration prediction for the next word with the TTS-based micro-timing strategy
works similarly well as for ongoing words (as above), with anMAE of 45ms (which
is again in the range of human performance). �e mean error is signi�cantly lower
than for either of the baselines (correlated ANOVA with post-hoc Tukey’s honest
signi�cance di�erences test).
Errors in calculating the estimated onset time correlate with speech rate estimation

errors for the completion (Pearson’s r = 0.607, p < .05), probably due to the linear
scaling in the TTS-based micro-timing model. �us, when onset estimation is com-
bined with duration prediction, errors add up and hence the error for the next word’s

12�e unscaled results for this baseline were determined with Mary 4.3.0, which, however, leads to
results that only minimally di�er from those obtained with Mary 4.1.1, used in all other experiments.

163

6 Short-Term Estimation of Dialogue Flow

end is somewhat higher than for either of the tasks alone, with a standard deviation of
94ms and anMAE of 74ms for the full TTS-based model, which again outperforms
the combination with the ASR-based model.

6.2.5.4 Estimating the Reliability of the Predictions

System actions during a user turn (e. g. co-completing synchronously) are o�en
optional and should only be performed if the system is su�ciently certain about its
estimates. �us, the micro-timing model should ideally single out those estimates
which are especially error-prone, trading coverage against quality of results, or even
better, return expected error margins or even an estimated error distribution.
A full solution for co-completion might then take into account the costs and merits

(as was attempted for non-verbal actions in theGreifarm example, cmp. Chapter 5.6.2),
of speaking in (relative) synchrony the next word vs. waiting for another word in the
hope that the estimate will be more precise then.
�is subsection is limited to a rudimentary approach to reduce the estimation error

of the completion’s onset. As mentioned above, onset estimation errors and speech
rate errors are correlated and hence singling out errors in onset estimation also helps
to reduce errors in the completion’s speech rate.
A large amount of features from ASR could be used to train models that predict

the estimation error (or to improve the estimation itself). �e TTS-based micro-
timing model furthermore integrates independent, non-ASR knowledge into the
process which should be especially helpful. However, to keep things simple, only
some correlations of estimation error with some individual features was performed,
instead of a an elaborate machine-learning experiment.
�e TTS-based micro-timing predictions were found to be especially unreliable

when they predicted a negative holding time (i. e. they predicted that the word should
already have started), or when they predicted a holding time of more than about
300ms, as can be seen in the scatter plot shown in Figure 6.10.
�e implemented system is not able to shorten onsets to account for negative

holding times (e. g. by shortening the onset of co-completion as proposed as a solution
to this phenomenon above), so that a simple rule was based on the estimated holding
time: completions are only generated for estimated holding times t if 50ms < t <
300ms. (50ms was chosen as lower bound to account for system audio delays.) �is
simple rule removes decisions for 16% of the words while improving the jitter (in
terms of standard deviation) of the remaining estimates by 14% (especially, singling
out all decisions to co-complete that are impossible to perform as requested in the
implemented system).

164

6.2 Micro-Timing Prediction

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

e
st

im
a

ti
o

n
 e

rr
o

r
(i

n
 s

)

estimated EoW (TTS-based micro-timing, in s)

Figure 6.10: Scatter plot of TTS-basedmicro-timing prediction for EoWvs. estimation
error, indicating the reliability of predictions.

6.2.5.5 Summary

�e evaluation shows that short-term micro-timing prediction is feasible and works
with a degree of precision that compares well to human performance (humanMAE

of 56ms for synchronizing to non-synchronously spoken recordings vs. prediction
MAE at 41ms for onset timing and 45ms for word duration, giving a combinedMAE

of 74ms).
�e TTS-based linear-scaling approach worked best in the experiments, as it com-

bines several sorts of linguistic information for duration modelling. It can, however,
only be used if a an utterance completion is available.
Reliability of predictions can be estimated and a simple rule can be used to improve

results if the system is allowed to skip words for which the prediction is estimated to
be unreliable, resulting in a 14% decrease of jitter.
Only duration, but not the alignment of other prosodic aspects has been evaluated

for the predicted completions. �is is, of course insu�cient for a full system. However,
the interdependence between ongoing and upcoming prosody, as well as the prosodic
interaction between synchronizing speakers aremore complex (Dellwo and Friedrichs
2012) than either the simple linear models used here could model, nor the simple
evaluation based on error distributions could cover.

165

6 Short-Term Estimation of Dialogue Flow

Figure 6.11: Example of shadowing for a �le in the Northwind corpus (k73nord2).
�e �rst line of labels shows the �nal ASR output, the second line shows
the decision points for each word and the third and fourth lines show
the system’s output (planned output may overlap, hence two lines; in the
system, an overlapped portion of a word is replaced by the following
word’s audio).

6.2.6 Example Application: Speaking in Synchrony With the User

To get a feeling for the complete system and to demonstrate that the micro-timing
component works on live input, an application for synchronous co-completion of user
utterances word-by-word was developed. Given the prediction for the next word’s
onset time and duration it prepares the output of that next word while the user is still
speaking the preceding word; the full system only implements the TTS-based micro-
timing model, which was found to be most e�cient in the evaluation above. Initially,
the full expected user utterance to be synchronized with is pre-processed byMaryTTS
(Schröder and Trouvain 2003) and used in the duration model. �e completions are
produced word-by-word, by re-scaling the TTS’s durations and handing the scaled
speech back to MaryTTS for synthesis. �e application needs to know what the user
is going to speak (because there is no real completion prediction component), so that
the user is currently limited to telling the story of North Wind and the Sun.
Two examples of shadowing are shown in Figures 6.11 and 6.12. As can be seen

in the screenshots, the decision points for all words are su�ciently early before the
next word, allowing for the next word’s output generation to take place. Overall,
shadowing quality is good, with the exception of the second “die” in the second
example. However, there is an ASR error directly following (“aus” instead of “luft”)
and the ASR’s alignment quality for “sonne die” is already sub-optimal. Notice that
the two words following the ASR error are not shadowed as per the error recovery
strategy.

166

6.2 Micro-Timing Prediction

Figure 6.12: Example of shadowing with live input (verena2nord2). Notice that “Luft”
is predicted and synthesized although it is (later) misunderstood by ASR
as “aus”, resulting in a missing shadowing of “mit” and “ihren”. In order
to not disturb the speaker, the system’s audio output was muted.

�e synchronous co-completion system is meant as a pure technology demonstra-
tor, showing that real-time incremental predictive processing is possible in InproTK.
It has hence not been formally evaluated with actual users of the system how they
judge the quality of the generated collaborative completions.

6.2.7 Discussion

�is section described the task of predicting the user’s micro-timing, and micro-
aligning a system response to the user’s speech (in the present case a synchronous
turn co-completion).
It was shown that a completion is possible a�er most words, as iSR in a small-

enough domain can have a su�cient lookahead (FOword end). For the task, the TTS-
based duration model outperforms both the baseline and the ASR-based model. Both
the next word’s onset and duration can be predicted relatively well, and within the
margin of human performance in synchronously reading speech.
�e system was not aimed at predicting and matching prosodic characteristics

such as loudness and intonation (and these aspects were not evaluated in the present
implementation). Simple matching (as was implemented for onset and speech rate) is
probably not as good a starting point for these as they aremore complex. Instead, these
phenomena mostly depend on communicative function, e. g. a co-optation having
a wide pitch-range and relatively high loudness regardless of the current speaker’s

167

6 Short-Term Estimation of Dialogue Flow

speech. Additionally, pitch-range would have to be incrementally speaker-normalized
which results in some implementation di�culties.13
�e analysis has been somewhat focused on the task of micro-aligning a turn-

completion and speaking in synchrony with the speaker. However, the micro-timing
prediction capability can be useful in a broad range of tasks, e. g. in combination
with word-based end-of-turn detection (Atterer, Baumann, and Schlangen 2008) to
allow for swi� turn-taking.14 Micro-timing models can be used to quickly detect
deviations in speech rate (which may indicate hesitations or planning problems of
the user) as they happen (rather than post-hoc), allowing to take the speaker’s �uency
into account in understanding, and turn-taking coordination (as outlined by Clark
2002), or to assess whether the user accepts (and appreciates) system actions during
the utterance.
Finally, even if in the long run precise timing of system actions turns out to be

unnecessary, this can only be found out systematically if one has tried systems that
do time their utterances very well and that have deliberate control over this feature.
�e present system enables such tests. Additionally, precise micro-alignment of turn
handovers could be used for controlled testing of linguistic/prosodic theory such as
the oscillator model of the timing of turn-taking (Wilson and Wilson 2005).
Clearly, the present duration modelling is rather simplistic and could likely be

improved by combining ASR and TTS knowledge, more advanced (than a purely
linear) mapping when calculating relative speech rate, integration of phonetic and
prosodic features from the ASR, and possibly more. As currently implemented,
improvements to the underlying TTS system (e. g. more “conversational” synthesis)
should automatically improve our model.15
�e current model considerably degrades if no full completion is available. How-

ever, o�en some idea about the future context may be available (such as: user will
continue speaking vs. user is almost done), even if the full completion remains un-
known. An incremental prosody model, that is able to integrate partial knowledge
about the future would be able to integrate such information and lead to a more
graceful degradation of performance for partially known user speech.
While the example application has shown that micro-timing works su�ciently well

to support synchronously co-completing the user, it has also highlighted a de�ciency

13Edlund and Heldner (2007) report that for a reliable pitch-range estimation 10 to 20 seconds of
voiced speech and hence – in the author’s view – twice the amount of audio is necessary. �is would
have reduced the corpus size by too much.

14Additionally, both implemented models consistently under-estimate the duration of IPU-�nal
words. It should be possible to turn this into a feature by monitoring whether a word actually has
ended when it was predicted to end. If it is still ongoing, this may be an additional indicator that the
word is turn-�nal.

15�ere was a dramatic improvement a�er switching from a previous version of MaryTTS.

168

6.3 Summary and Discussion

of current speech synthesis technology, namely the fact that it performs non-incre-
mentally. While words can be synthesized one a�er the other (however, the prosodic
characteristics have to be pre-determined as they requiremore than the word-context),
there is no provision of speeding up an ongoing word, or lengthening it. �is would
be needed to correct a previous estimation error and to align more closely to the user’s
speech. In fact, Dellwo and Friedrichs (2012) show that a synchronizing speaker and
the target speaker interact in a complex way, showing that humans are well able to
perform such online adaptations. �is stronger interaction and faster reaction may
also be the cause why the individual errors for onset and duration prediction add
up in the system while human speakers are able to correct their speech rate during a
word.

6.3 Summary and Discussion

�is chapter was aimed at putting incrementality to work towards spoken dialogue
systems that interact incrementally below the granularity of turns. �e �oor tracking
component that is integrated in InproTK was presented in Section 6.1, which is
able to support (sub-)turn-taking decisions based on IPU-�nal prosody to allow a
collaboration on utterances between the user and the system. An example application
that uses this feature to act on partial knowledge is more time-e�cient and also rated
as more human-like and more reactive than a non-incremental baseline.
Going one step further, a micro-timing model was presented in Section 6.2 that

can be used to estimate the remaining duration of an ongoing word. An example
application used the micro-timing model to also estimate the durations of words
following the ongoing word and was able to speak in synchrony to the input, showing
that end-to-end real-time incrementality is possible.
Of course, the results from the second step could be integrated into the general �oor

tracking component, either to broaden the interface towards the dialogue manager,
allowing for micro-aligned system actions, or to improve turn-end estimation in the
�oor tracker by integrating micro-timing considerations such as expected EoW times,
or deviation tracking.
Where the �rst example application only outputs very short feedback utterances,

the second (co-completing) example application highlighted the fact that longer user-
coinciding system utterances may need to be adapted while they are produced. �e
output shown in Figures 6.11 and 6.12 show that non-incremental word-by-word
output results in gaps and overlaps that correct estimation errors in a highly unnatural
way.

�is chapter has increased the monitoring granularity of dialogue �ow estimation
from the level of full turns via sub-turn units to single words. However, humans

169

6 Short-Term Estimation of Dialogue Flow

continuously monitor their interlocutors, and, more importantly, also monitor their
own speech continuously. In contrast to this, the implemented system could not be
monitored or adapted while produced. �e experience in this chapter has shown that
it is especially the lack of proper incremental output generation that constrains the
implemented system.
A�er having focused on input incrementalization into the dialogue system, and

supporting the decision making with micro-temporal information so far, the next
chapter will turn to incremental speech synthesis that will allow to instantly adapt
output in terms of speech rate, prosody, and content, completing the set of “building
blocks” for incrementally interacting spoken dialogue systems.

170

Drawing by Milo Winter, 1919, (taken from Aesop 1991, public domain).

7 Incremental Speech Synthesis

�e previous chapters have shown how incremental dialogue processing can help
to build a partial understanding of the user (Chapter 5) and to help estimate the
upcoming progression of the dialogue �ow during a speaker’s turn (Chapter 6). �ese
capabilities together allow for advanced interactive behaviour in SDSs, allowing the
system to shape the interaction, for example by starting to act during a user’s turn
(Sections 5.6 and 6.1.2), more closely aligning system actions to the interlocutor based
on the speaker’s behaviour and the system actions’ nature (Section 6.1.2), or even
predicting word timings, allowing to speak in synchrony with the user (Section 6.2.6).
All the systems that were presented so far, however, show only a limited amount of
incremental behaviour in the way that they generate their output. All systems so
far were able to take back their (non-linguistic) actions if an action’s support is lost;
however they had no advanced control over their spoken output.
Being able to partially take back actions and to adapt ongoing actions enables

speculative execution, and hence a higher degree of vitality in the interaction. Actions
that turn out to be wrong in light of updated information can simply be adapted which
reduces the ‘cost’ of these wrong actions. In contrast, if actions cannot be taken back
or adapted, the system should rather wait until its hypothesis becomes su�ciently
stable. �e system in Section 6.2.6 performed speculative execution without being
able to adapt ongoing actions (here: words that were being synthesized). �is resulted
in gaps in-between words or words being cut o� when timing hypotheses turned out
to be wrong. Much better results could be expected if the system had been able to
adapt the ongoing speech to meet the desired timings in a smooth way.
In short, speculative execution of (partial) actions that can later be aborted or

changed enables the system to increase its degree of vitality in the interaction, for
example resulting in more naturally sounding co-completion capabilities. A system
can also extend its inventory of dialogue contributions, if these contributions can be
adapted to account for the evolution of events in a highly dynamic environment.
So, a�er having focused on incrementalization of the input side and analysis of

dialogue �ow, this chapter turns to incremental spoken output. Again staying on the
lower layer, this chapter focuses on incremental speech synthesis (iSS) as a means to
enable more naturally interacting dialogue systems. Section 7.1 presents and discusses
use-cases for incremental speech output from which some requirements will be
deduced, Section 7.2 gives some background information on speech synthesis in
general. Readers familiar with HMM-based speech synthesis may want to skip ahead

172

7.1 Rationale for Incremental Speech Synthesis

Luft
mit

ihren
die die

Sonne

 Luft mit ihren die die Sonne

a) word-by-word
 incremental

b) w/ delivery
 adjustments

Figure 7.1: Detail of word-by-word incremental synthesis from Figure 6.11: (a) high-
lighting the overlaps and gaps that result from changing incremental hy-
potheses, (b) incremental delivery adjustments (here: tempo adjustments)
squeeze or stretch ongoing words to account for the changes.

to Section 7.3 which explains how speech synthesis is incrementalized in the InproTK
incremental speech synthesis (iSS) component.
�e latter part of the chapter investigates iSS in a series of experiments: Section 7.4

evaluates the merit of using iSS in a highly dynamic environment as compared to
standard, non-incremental speech synthesis. iSS is shown to be tremendously useful.
Section 7.5 shows an actual incremental speech output pipeline that combines incre-
mental NLG with iSS. �e realized system again outperforms the non-incremental
baselines. Section 7.6 �nally evaluates the quality trade-o�s in realized prosody asso-
ciated with using incremental instead of standard speech synthesis, concluding that
one phrase of lookahead is su�cient even for the relatively crude prosody processing
of the implemented system. Section 7.7 concludes the chapter and points out future
work.

7.1 Rationale for Incremental Speech Synthesis

�e co-completion system presented in the previous chapter attempted to output
words as they were spoken by the user, however relied on a coarse, incremental
approach to speech synthesis: every word was simply uttered when the system deemed
this ideal, not taking into account any presently spoken word. As can be seen in
Figure 7.1 (a), this leads to words being cut o� when a next word is started before the
previous has ended, or gaps when a word is started only a�er the previous word has
ended. Of course, a system should rather speed up the delivery of a word to make
room for the next, than cutting it o�, or to stretch an ongoing word if the next word
is only to be uttered later (and possibly start early and stretch the onset of that next

173

7 Incremental Speech Synthesis

time event description ongoing utterance (spoken part in bold)

t1 car on Main Street The car drives along Main Street.

t2 car will have to turn . . .along Main Street and then turns ‹hes›

t3 car turns right . . .along Main Street and then turns right.

Figure 7.2: Example of incremental utterance production as a car drives along a street
and turns. �e ongoing utterance is extended as information becomes
available.

word). �is latter strategy is shown in Figure 7.1 (b). However, it requires the speech
synthesis component to be able to adjust the timing of ongoing words, which is only
possible if synthesis is conducted on-the-�y, and just-in-time.
Where synchronous speech mostly requires on-the-�y timing adaptation, other

interaction phenomena may require quick adaptation of pitch and loudness, as for ex-
ample turn-taking contests, which result in higher pitch and louder speech (Scheglo�
2000).
A more common case that shows the need for incremental speech synthesis in a

spoken dialogue system is the need to start speaking before all information required
for the utterance is available, or to extend or even change the content of an ongoing
utterance (of course, only its yet unspoken part). Take as an example the situation
depicted in Figure 7.2 where a car can be observed at time t1 going along a street,
nearing a junction at time t2, and turning right at time t3. As shown in the �gure, a
system that comments on these events should be able to start the comment before all
information to be delivered is available, and gradually extend the utterance while it is
ongoing asmore information comes in. �at is, a system commenting on events in this
domain should be incremental in order to adapt its utterance to the observed events.
As the utterance is extended or changed, prosodic aspects of the already planned

174

7.1 Rationale for Incremental Speech Synthesis

parts may have to be reworked, for example, a sentence-end intonation should be
reverted when more content is added.
�e overall requirements (or at least desiderata) for incremental speech synthe-

sis will be summarized a�er a brief survey of related work on incremental output
production.

7.1.1 Related Work

Experiments have shown that human speakers usually plan their utterances somewhat
ahead, typically at least in chunks of major phrases (Levelt 1989). However, if the need
arises and the original plan becomes moot, human speakers can quickly abandon
it and re-plan. �is re-planning sometimes results in a dis�uency (hesitation or
self-correction), in other times may not be noticeable.
In contrast, current interactive systems that make use of speech synthesis typically

place this synthesis last in a pipeline (McTear 2002). It is triggered when system
prompts are to be played and o�en control does not even return before the utterance
has �nished playing. VoiceXML allows system utterances to be aborted in case a barge-
in is detected by the ASR component. It does not provide for any more sophisticated
adaptation of, or feedback on delivery (Oshry et al. 2009). Only some systems can,
if their utterance is interrupted, stop playing the utterance and provide information
about where the interruption occurred (Edlund 2008; Matsuyama et al. 2010).
�e problems of genuinely incremental output generation have rarely been discussed

in the literature. Edlund (2008) outlines some requirements for incremental speech
synthesis: to give constant feedback to the dialogue system about what has been
delivered, to be interruptible (and possibly continue from that position), and to run
in real time. Edlund (2008) also presents a prototype, which however is limited to
diphone synthesis that is performed non-incrementally before utterance delivery
starts. While this system gives feedback and is temporarily interruptible, additional
information cannot be taken into account to change an utterance during delivery.
Skantze and Hjalmarsson (2010) �nally describe a system that generates utter-

ances incrementally in a Wizard-of-Oz setting, allowing the Wizard to incrementally
produce and revise its output. In the absence of other output, the system can auto-
matically play hesitations to ‘buy time’. An evaluation that they conducted shows
that users prefer such an incremental system over a non-incremental version, even
though the incremental system produced longer dialogues (because the hesitations
were not aborted as soon as the remainder of the utterance became available but were
�nished as originally planned). �e approach presented here is conceptually similar
to (Skantze and Hjalmarsson 2010), but targets a lower layer of speech production
incrementalization, namely the realization or synthesis layer. Where their system
relies on ‘regular’ speech synthesis that is conducted on relatively short utterance

175

7 Incremental Speech Synthesis

fragments (which leads to a trade-o� between synthesis quality, favoured by long
fragments, and system responsiveness, which is higher for shorter fragments), the
work presented here aims to incrementalize speech synthesis itself.

Alignment of speech and gesture in virtual humans has been partially achieved by
inserting pauses in speech and gesture production, respectively, allowing the ‘slower’
of the two to catch up (Welbergen 2011, Chap. 5). Of course, being able to adapt the
timing of speech synthesis would help to better solve this alignment problem as well.

7.1.2 Requirements

Some requirements towards iSS that are needed to support the use-cases mentioned
above are given below. �e list extends Edlund’s (2008) requirements speci�cation,1
adding the important characteristic of being able to change one’s mind, and to work
just-in-time.
An incremental, just-in-time speech synthesis component must be capable of:
1. handling changes/extensions made to (as-yet unspoken) parts of the utterance;
2. starting to speak before utterance processing has �nished;
3. enabling adaptations of delivery parameters such as speech rate or pitch;
4. autonomously making appropriate delivery-related decisions;
5. providing system-internal feedback about progress in delivery; and, last but

not least,
6. running in real time.
�e primary requirement is that an incremental speech synthesis component be able

to extend and change an ongoing utterance. With this capability, a system can be built
that starts speaking as soon as it has enough information to formulate the beginning of
an utterance – if done right, there will still be time to expand or change the remainder
of the utterance later. For example, a systemmight want to comment on a world event
such as a car appearing to be turning but it being not yet clear whether right or le� (as
in Figure 7.2). �e system may go ahead and let its speech output component begin
to realize the utterance “The car turns ‹dir›.” even though the direction remains
uncertain.2 As it is able to exchange “right” with “left” during delivery, it can start
speaking as soon as it is certain that the car will turn, but before it is certain where
the car will turn (and use the duration of the initial part of the utterance to �nd out
where the car will actually go – as long as it is su�ciently certain that the direction
will become known before the initial part of the utterance is over). Adding more

1Concerning the list of requirements, only items 1 (limited to utterance extension, not covering
changes), 5, and 6 are mentioned by Edlund (2008).

2‹dir› here stands as an abstract placeholder for right or le� to help the synthesizer generate an
intonation appropriate for the full utterance. �e implementation below simply �lls in “right” as it is
lacking support for abstract placeholders.

176

7.1 Rationale for Incremental Speech Synthesis

words to the end of an ongoing utterance is a similar case. If the system is able to add
words, it can seamlessly add information that was not available utterance-initially.
For example, a system could append “onto Straight Street” in the example above.
�e second requirement, starting to speak before processing is over, makes the system

faster to react even if more than the absolutely necessary beginning is provided by
higher-level components (which is actually desirable as it can then be considered
when planing the overall utterance prosody).
�e third requirement, adapting delivery parameters such as tempo, loudness,

intonation, stress and other supra-segmental properties of speech, can be important
to account for timing issues with incremental changes, to align speech with the
environment or with other output modalities, and to allow for smooth concatenation
of utterance continuations. For example, it should be possible for incremental speech
synthesis to change the tempo at which speech is delivered seamlessly and with very
little delay (to the point of interrupting speech �ow as proposed by Edlund 2008),
possibly allowing to change the duration of every speech sound individually. When
an ongoing utterance is changed (the �rst requirement), supra-segmental properties
of the utterance may have to be adapted as well (e. g. an utterance-�nal drop in pitch
must be cancelled if that portion of speech is no longer utterance-�nal) and this
should happen automatically.
Fourth, incremental output components operate under real-time pressure, that

is, they must continue to deliver further output in time a�er they have started. In-
cremental speech synthesis can help to lower this burden by autonomously making
delivery-related decisions, such as hesitating, if a higher-level component has not
provided the remainder of the utterance, yet, and synthesis approaches this point
(i. e., neither “left” nor “right” has been speci�ed yet in the example above). �e
synthesis component could handle this situation, for example by �rst lengthening
the remaining few phonemes, and/or inserting a hesitation. Similarly, if it is slightly
too late to change a word because it is already being realized, the component could
autonomously decide to insert an overt repair (like “uh” or “no”). Finally, an ongoing
hesitation should be aborted quickly once the missing content becomes available.
Finally, especially if an incremental synthesis component takes decisions like hesita-

tions autonomously, other components in a full system may require detailed feedback
about the progress of utterance delivery at any moment. Also, as for any type of
incremental processing, incremental speech production is of rather limited use if
computationally it does not run in real time.
�e next section gives some details about speech synthesis in general, before the

incremental speech synthesis component that is part of InproTK will be described
and shown to meet the requirements set out above in Section 7.3.

177

7 Incremental Speech Synthesis

text text processing

markup

concepts concept processing

waveformtarget sequence

HMM + vocoding

unit selection

diphones

linguis tic proc es s ing: waveform s ynthes is :

Figure 7.3: Processing paths in speech synthesis systems; various input is transformed
into a target sequence which can then be turned into a speech waveform.

7.2 Speech Synthesis in a Nutshell3

Speech synthesis turns the linguistic description of an utterance into audible speech.
An overview of this process is shown in Figure 7.3. Processing is conventionally
split into two parts, linguistic processing and waveform synthesis. �e interface
between the two, the target sequence, describes the utterance using speech sounds,
their durations and designated pitch values. Linguistic processing is followed by one
of several waveform synthesis techniques that output the �nal synthesis result.
Two paradigms of linguistic processing exist: Text-to-Speech (TTS) uses the textual

form of an utterance as input which is analyzed and turned into the target sequence.
However, text does not explicitly encode all the details necessary for the production of
an utterance. For example, the utterance “Peter throws the ball.” should be accen-
tuated in di�erent ways – depending on the importance of the pieces of information
to be conveyed – and failing to do so may confuse the user. One approach to dealing
with this is to annotate the text using some markup language (e. g. SSML, Burnett,
Hunt, and Walker 2004). �e annotations may describe aspects of the speech output
that are not marked in its textual form, overcoming many of the problems of the
textual representation.
Another approach is Concept-to-Speech (CTS, see e. g. Taylor 2000) in which the

input is described in some logical form on a high level of abstraction and NLU and
synthesis are combined into one task. Using the high-level description, CTSmay have
the advantage of knowing which of several possibilities should be synthesized, as can
be seen in Example 7.1, where the focus of the utterance is explicitly marked in the
logical form and can hence result in more adequate prosodic assignment.

3�is introduction to speech synthesis builds on the excellent descriptions by Taylor (2009) and
Jurafsky and Martin (2009, Ch. 8), which however give little detail on HMM-based synthesis.

Readers familiar with HMM-based speech synthesis may want to skip ahead to Subsection 7.2.5.

178

7.2 Speech Synthesis in a Nutshell

(7.1) "throw(peter, ball) ∧ focus(peter)"Ð→ Peter throws the ball.
"throw(peter, ball) ∧ focus(ball)"Ð→ Peter throws the ball.
"throw(peter, ball) ∧ focus(throw)"Ð→ Peter throws the ball.

CTS systems either generate target sequences directly, or output marked-up text
that clari�es and speci�es the desired input interpretation, and is passed on to text-
based processing. �is latter approach thus incorporates the task of natural language
generation which in dialogue systems is o�en implemented as a separate component.
However, most NLG components output pure text (without annotations), e�ectively
disregarding the available information necessary for optimal speech synthesis.
�is work focuses on TTS because its interface (text) is more generic and makes

our results more widely applicable. Especially since CTS can be implemented by using
marked-up textual representations, focusing on TTS does not result in a principled
limitation. Section 7.5 shows how iSS can be combined with an iNLG component.

7.2.1 Text-based Linguistic Processing

�is subsection describes the processing steps necessary to turn textual input into a
target phoneme sequence. Linguistic processing uses a top-down approach, starting
on the utterance level and descending onto words and phonemes (Taylor 2009).
�e �rst task is to segment the incoming text into individual sentences (or, in spoken

language, utterances) and to then tokenize the words. Both of these tasks are not
as trivial as they may seem, because neither do terminal punctuation marks clearly
de�ne sentence boundaries (‘Mr. Smith’, ‘Yahoo!’) nor does whitespace unambiguously
de�ne word boundaries (‘New York’, ‘you’re’). Text normalization brings all words into
a readable form: numbers and dates are recognized and expanded (o�en di�erently
depending on the assumed meaning: ‘1984’ vs. ‘12345’), abbreviations are either
spelled out (‘USA’, ‘NHS’), decapitalized (‘NATO’, ‘AIDS’), or expanded (‘etc.’, ‘et al.’),
and symbols are replaced with a pronounceable form (‘£’, ‘:-)’). Tokenization and
normalization o�en pose problems if the TTSmust be able to deal with real-world
texts. For SDSs, system utterances most o�en come from a moderately restricted
language which helps to avoid potential problems.
Next, the input text is structurally analysed to determine intonation phrases, to

assign stressmarks to words, and to determine tones of phrases and stressed words
(e. g. following the ToBI system, Silverman et al. 1992), most o�en using one or several
rounds of decision-making by rules or learned decision trees. To support decision
making, part-of-speech tagging or some form of parsing or chunking is performed
as an initial processing step. �e intonation assignment is a problem inherent to the
TTS approach, as the prosodic realization is not explicitly marked in textual input.
For example, prosodic assignment may depend on information status established in

179

7 Incremental Speech Synthesis

previous utterances, on discourse context, or even on things like speaker and listener
gaze – aspects which may be known to the dialogue system, highlighting the fact that
text alone is a sub-optimal interface.
Next, in phonemization, the words are transformed from their graphemic to a

phonemic representation, through letter-to-sound rules, decision trees, or simple
dictionary lookups (cmp. Section 5.1.1.2), which may involve syllabi�cation. Finally,
the phonemes need to be assigned duration, pitch, and possibly loudness values
(resulting in the target sequence) depending on intonation tones and other aspects.
Durations are o�en assigned using decision trees, and �nal, continuous pitch contours
may be generated using the HMMmethod (see below) from dis-continuous decision
making (e. g. by decision trees).

7.2.2 HMM-based Waveform Synthesis

�e waveform synthesis step turns a given target sequence into a speech waveform.
While there are di�erent competing methods, this section focuses on HMM-based
synthesis and only brie�y discusses this choice and the alternatives available in Sub-
section 7.2.3.
Chapter 5.1 argued that speech can be described by the source-�lter model and,

building on this, Hidden Markov Models. For recognition purposes, the source was
described as resembling an impulse train �ltered by the vocal tract. �e source was
disregarded, and analysis focused solely on the �lter (described using Mel-frequency
cepstral coe�cients,MFCCs) which re�ects the articulated phoneme (whereas source
parameters mostly re�ect individual speaker characteristics). While speech recog-
nition reduces the full speech signal’s complexity, speech synthesis needs to do the
reverse: expand and recreate the full signal’s variability from a limited parametric
representation so that the speech output sounds natural. �is is why synthesis also
needs to model the ‘source’ aspect of the source-�lter model for synthesis.

HMM-based synthesis is a form of vocoding where the target sequence is �rst
transformed into a sequence of parameter frames that are then used to synthesize
samples by a vocoder. To explicitly include voicing aspects of the signal source in the
model, a pair of parameter sets is used, one to describe the signal source (STR) and one
to describe the �lter (Mel-cepstral parameters,MCP). Both are learned from training
data using cepstral analysis techniques. As these parameter sets are independent, they
can be modelled independently, as HMM feature streams; a third stream emits pitch
values for every data frame.
�e following subsections �rst describe how to use HMMs to generate synthesis

parameters and then explain how these are vocoded into speech.

180

7.2 Speech Synthesis in a Nutshell

7.2.2.1 Parameter Estimation with HMMs

In the most simple form, HMMs could be used for generation by randomly emitting
parameter vectors and transitioning through the network according to the emission
and transition probabilities (A and B, cmp. Section 5.1.2.1). �is is, however, not
only ine�cient but also it completely disregards the continuity constraints of speech:
the gradual spectral change in speech that was captured in recognition using ∆- and
∆∆-features needs to be explicitly enforced in synthesis.
To restrict the model to gradual change, the desired sequence of synthesis coef-

�cients (C = c1, c2, . . . , cn) is appended with dynamic features ∆ct which compute
the change between ct−1 and ct+1 (similarly ∆∆-features for acceleration), forming
observations ot = (ct , ∆ct). When using Gaussian distributions as probability density
functions B, the most likely emission sequence given an aligned state sequence can
then be determined by solving a large system of linear equations that includes both
the synthesis coe�cients as well as the derived dynamic ∆-features (Taylor 2009) .
However, �nding the optimal observation for an aligned state sequence does not

solve the problem of �nding the optimal alignment.4 Tokuda et al. (2000) developed
a method to iteratively improve alignments, the �rst break-through for HMM-based
synthesis. However, it was found later that �xing the alignment by explicitly modelling
state durations (e. g. using decision trees), e�ectively resulting in a Hidden Semi-
Markov Model (HSMM), performs just as good and saves iteration costs (Zen et al.
2007a).
�e maximum likelihood estimation technique described above �nds a sequence

that is ‘most likely’, that is, it optimizes the resulting sequence relative to the means of
the observation probabilities. While the resulting speech is clearly understandable, it
is lacking in naturalness and ‘depth’ because the variance of the signal is not as large
as it is in natural speech. A technique called global variance boosting (GV, Toda and
Tokuda 2007) can be used to iteratively optimize both the means and the variances,
resulting in far more natural speech (Taylor 2009). �e resulting parameters from the
independently optimized HMM streams are then passed on to vocoding.

7.2.2.2 Vocoding

�e vocoder turns the parametric emissions of the HMM optimization into a speech
signal (the reverse task to the ASR frontend’s, see Section 5.1.1.3).

4Speech recognition uses Viterbi decoding to �nd the state sequence which contains the best-
matching alignment (even though all possible alignments for each state sequence should ideally be
taken into account). �e rationale was that the best-matching alignment’s probability dominates all
other alignments’ probabilities. Here, one is le� without any ‘good’ alignment at all, and picking one at
random will likely be far from optimal.

181

7 Incremental Speech Synthesis

Vocoding implements the source-�lter model. In its simplest form, the source is
modelled as either voiceless (in which case white noise is generated) or voiced. In the
latter case, a periodic signal (e. g. an approximation to an impulse train or a sawtooth
signal) is generated with a speci�ed fundamental frequency f0. �e source signal is
then �ltered, e. g. using cepstral coe�cients that describe how much to attenuate each
Mel-spaced frequency band. �us, for every frame (in this work: 5ms) the voicing
status, the fundamental frequency f0 (if applicable), and band-pass �lter parameters
expressed asMel-cepstral parameters (MCP) are required.5 Voicing can be determined
per HMM state and optimization is used for the other parameters as described above.
An advanced approach that leads to more natural sounding speech is STRAIGHT

vocoding (Kawahara 1997) which uses amixed-excitation approach (instead of the
binary voicing decision) and describes the source signal with additional features
(STR) beyond fundamental frequency alone (Zen et al. 2007b).

Mixed-excitation vocoding usingMCP and STR features requires a fair amount of
signal processing which, however, is e�ectuated in the time-domain. �is means that
the audio signal is generated sample-by-sample. Additionally, the input parameters
are consumed in a piece-meal fashion, that is, vocoding is incremental by nature.
�is is, of course, convenient for our incrementality endeavours.

7.2.3 Discussion of Alternative Synthesis Techniques

�is subsection presents some alternatives to HMM-based synthesis. Section 7.3 will
later explain why HMM-based synthesis was chosen as the basis for incremental-
ization. �e major alternative to HMM-based synthesis is concatenative synthesis
which comes in two �avours. Unit-selection synthesisworks by stitching together short
stretches of speech from a large single-speaker database. �e database is phoneme-
aligned and during synthesis is searched for the best �tting combination of phoneme
sequences in the database to the target sequence and concatenate them with as little
signal processing as possible, resulting in high quality speech. �e search that is nec-
essary to select the best units is based on similarity to the requested targets and pitch
contours (matching costs), as well as concatenation costs determined by (spectral)
similarity at the joints.
A simplistic form of concatenative synthesis is diphone synthesis where every

phoneme transition only exists once in the database. As a consequence, there is
no search, but acoustic quality is lower as more concatenations and more signal
processing is necessary. Diphone synthesis (which has been used incrementally in
the past: Edlund 2008) results in low synthesis quality compared to other synthesis
methods.

5Using 5ms frames (as opposed to 10ms for ASR) allows more �ne-grained variation allowing for
higher naturalness.

182

7.2 Speech Synthesis in a Nutshell

A completely di�erent paradigm is articulatory synthesis in which the human artic-
ulatory organs are simulated and animated in a simulation engine and the resulting
waveform is derived from physical formulae. While providing fascinating insight into
speech production, current systems6 do not allow high-quality synthesis of contin-
uous speech, nor do the required computations by the physics model indicate that
articulatory synthesis works at the ‘right’ level of abstraction.7

7.2.4 Evaluation of Speech Synthesis

�e evaluation of speech synthesis di�ers fundamentally from that of speech input
components (such as ASR), as the evaluation criteria are more complex: we are
interested in user perceptions which cannot simply be compared to a gold standard
transcription as was the case for ASR.
One major requirement of any speech synthesis system is that it be intelligible.

Intelligibility can best be measured based on human listening. Even with listening
tests, 100% intelligibility can probably not be reached, as human listeners make
mistakes, too.8 While intelligibility testing was of major importance for decades,
speech synthesizers have reached a very high level of intelligibility, with other factors
such as naturalness now predominating.
A dialogue system has to handle non- and mis-understandings in any case (e. g. to

account for external distractions), so perfect intelligibility is not even very important.
However, SDSs for natural interaction require speech synthesis to also sound natural.
Naturalness determines the proximity of the synthesis to a human’s speech production
capabilities and can be measured for example by a mean opinion score (MOS) in
listener ratings (ITU 2006). Large scale naturalness evaluations take place in the
Blizzard Challenge (Black and Tokuda 2005) every year with the goal of advancing
corpus-based synthesis techniques.MOS testing will be used in Section 7.4 to compare
non-incremental and incremental speech synthesis.
An important aspect of synthesized speech is the prosodic realization, measurable

as segment durations and intonation contours (‘pitch tracks’). Prosodic parameters
are continuous and changes to a system’s prosody generation component will o�en be
gradual. �us, evaluation by listening tests for all possible changes becomes infeasible
and some sort of numeric comparison to some ‘ideal’ contour via automatically
extracted measures is essential. Clark and Dusterho� (1999) found that root-mean-
square error (RMSE) between pitch contours best correlated with user-ratings from

6For example, Gnuspeech (Hill, Manzara, and Taube-Schock 1995, http://www.gnuspeech.org) or
ArtiSynth (Vogt et al. 2005, http://www.artisynth.org)

7It is for a reason that airplanes get along without �apping their wings.
8�e problem of ‘imperfect’ listeners in evaluation can be handled by including human speech in

listening experiments, which can be used to establish an upper boundary of the system’s intelligibility.

183

http://www.gnuspeech.org
http://www.artisynth.org

7 Incremental Speech Synthesis

perceptual evaluation among a number of measures. �e analysis of incremental
prosody generation in Section 7.6 will rely on this result.
Finally, one aspect of speech synthesis is hardly ever included into formal evalua-

tions: the fact that synthesizing speech takes time, which can be a signi�cant burden
on interaction quality in dialogue systems (and is one reason why applied systems
most o�en revert to canned speech, trading �exibility for speed). Especially for longer
utterances, synthesis time can be several seconds. �is chapter will analyze a strategy
for incremental speech synthesis which salvages some synthesis quality in favour of
lower processing delays, allowing for better interactions and potentially improving
overall system performance.

7.2.5 MaryTTS

MaryTTS (Schröder and Trouvain 2003) has been developed at the German Research
Center on Arti�cial Intelligence (DFKI) since the early 2000s. Being a research-
geared system, it was built with modularity, �exibility and extensibility in mind. �is
especially shows in the internal data representation which is based on XML (Bray
et al. 2008) and allows easy output, external manipulation and re-integration of all
data at every processing stage. For example, this can be used to bypass any of Mary’s
internal modules to try out alternative, external modules, as long as their output can
be transformed to MaryXML (Schröder and Breuer 2004).
�e �exibility of MaryTTS however comes at a price: processing modules exchange

XML documents (accessed and manipulated via the Document Object Model, DOM,
Byrne et al. 1998) with each module fully scanning and processing the full input
before generating output which is only then passed on to the next processing module.
As documents have to be complete to be accessible via DOM, Mary’s processing
scheme is inherently non-incremental and this even though modules are arranged in
a plain pipeline. Another disadvantage of the DOM-based data model is that some
operations (like tree traversals) incur signi�cant processing overheads and result in
slow performance of the implementation.
To �nd the processing bottle-necks, MaryTTS’s execution times were analyzed for

some exemplary utterances by recording processing time in the di�erent modules
(as reported by debug messages). Figure 7.4 shows the result of pro�ling the runtime
spent in the di�erentmodules while processing �ve test utterances. As can be seen, the
early stages of (symbolic) processing such as tokenizing or POS tagging are very fast
and all together take roughly 10% of the overall time. Acoustic modelling (�nalizing
pitch and duration decisions, and selecting HMM states for later synthesis using
classi�cation and regression trees, CARTs) takes 20% of the share and the majority
of time (roughly 70%) is spent in HMM synthesis. Not shown in the �gure, HMM

184

7.3 Incrementalizing Speech Synthesis

TextToMaryXML

JTokeniser

Preprocess

OpenNLPPosTagger

JPhonemiser_de

Prosody

PronunciationModel

AcousticModeller

Synthesis

other

0 %

20 %

40 %

60 %

80 %

100 %
Processing Effort per Module (OpenMary 4.3.0)

Module

Figure 7.4: Shares of processing time by MaryTTS’s processing components for �ve
utterances of various lengths and complexities (OpenMary 4.3.0 with
bits3hsmm voice, mean values of three execution runs).

synthesis itself is split into the sub-tasks of parameter optimization and vocoding,
which take roughly equal amounts of time.

�e following section discusses the integration of MaryTTS’ processing modules
into the incremental processing framework InproTK to obtain an incremental speech
synthesis (iSS) module.

7.3 Incrementalizing Speech Synthesis

�is section describes the general approach taken to ‘incrementalize’ HMM-based
synthesis on the basis of MaryTTS, and then describes the ways in which iSS can be
used in InproTK.

HMM-based speech synthesis was chosen for incrementalization for several reasons
(and even though concatenative synthesis is still more common in commercial TTS
systems, Jurafsky and Martin 2009):
First, an HMM-based synthesis nicely separates the production of vocoding pa-

rameter frames from the production of the speech audio signal which allows for more
�ne-grained concurrent processing (see below). �is can be seen as a similar distinc-
tion as between motor planning and actual articulation in human speech production
(Levelt 1989).

185

7 Incremental Speech Synthesis

utterance

the turnscar

structural pattern

words to be spoken

ð tkə rɑ nphonemes to be uttered

current point in time

vocoding parameter frames
(motor planning)

synthesized speech audio
(articulation)

ɜː s

chunk1

overall container

HMM states

… just enough lookahead
to model co-articulation

… just enough to keep
sound-card buffers full

… added as content
becomes available

generated by
standard Mary
processing

Figure 7.5: Schematic view of the data model and the interplay betweenMaryTTS and
InproTK. Some partial text is passed to MaryTTS which provides words,
phonemes, andHMM states, and their durations.HSMM optimization then
takes place incrementally with limited contexts, and vocoding provides
audio just-in-time.

Furthermore, even though optimization is global for both HMM-based and con-
catenative techniques as is, the in�uence of look-ahead on the continuity constraints
is fairly constant (and small) while unit-selection with limited look-ahead will jump
erratically between unit sequences. Parameters are partially independent in the vocod-
ing frames. �is allows to independently manipulate e. g. pitch without altering other
parameters or deteriorating speech quality (in unit-selection, a completely di�erent
unit sequence might be optimal even for slight changes of pitch).
Finally, HMM synthesis has been shown to work incrementally by Dutoit et al.

(2011),9 however without proper integration into an incremental architecture. �e
full integration of incremental speech synthesis into the incremental dialogue system
architecture is the contribution of the work presented here.
�e overall strategy of the integration was to rely on asmuch ofMaryTTS’s standard

capabilities as possible and to focus on reworking (time-)critical aspects only. As
could already be seen in Figure 7.4, the vast majority of processing time is spent in
the last of MaryTTS’ processing modules, the HMM synthesizer. For this reason, only

186

7.3 Incrementalizing Speech Synthesis

this module was made ‘fully’ incremental, with the preceding symbolic processing
pipeline remaining unchanged.
Figure 7.5 presents a schematic overview of the data model and work�ow for

iSS. When speech is to be synthesized, a sequence of words – not necessarily a full
utterance – is passed to MaryTTS for linguistic pre-processing and HMM state and
duration assignment. �e resulting XML is parsed and turned into word and phoneme
IUs.10
As can be seen in the �gure, the processing scheme does not completely reach

the ideal of ‘triangular’ incremental processing outlined in Section 4.1.2: the results
from linguistic pre-processing ‘stick out’ from the triangle, violating the just-in-time
principle.11 Of course, the current solution for linguistic pre-processing does not
really go by the (incremental) book. However, linguistic pre-processing is fast (as
shown in Figure 7.4) and hence re-processing in the light of changing hypotheses
comes at little cost.
�e next step,HSMM optimization, had to be considerably reworked from standard

MaryTTS to support incremental processing. Dutoit et al. (2011) have previously
shown that the (intrinsically global) HSMM optimization operation can simply be
performed phoneme-by-phoneme, using a context of only a few phonemes le� and
right to model co-articulation. �ey show that quality (in terms of spectral distortion
and subjective ratings) degrades only marginally when using two phonemes of future
context instead of the full utterance. Dutoit et al. (2011) appear to have used stan-
dard emission optimization without global variance optimization (judging from the
voice quality of their system). In contrast, the work presented here implements GV
optimization within local contexts. No formal evaluation has been performed, but
informal contrastive listening experiments con�rm that this compares well with non-
incremental GV optimization and is a great improvement over previous incremental
HMM synthesis.
Even though the incremental optimization incurs some overhead (because of over-

lapping local contexts that are optimized repeatedly), the amount of processing before
vocoding parameters for the �rst phoneme become available is greatly reduced (cmp.
evaluation in Section 7.5 below). Furthermore, the independent parameter streams
describing source and �lter can be optimized concurrently using multi-threading,
which further improves performance compared to MaryTTS’s implementation.
As explained in Section 7.2.2.2, the vocoding algorithm is incremental by nature.

However, in standard MaryTTS synthesis, the loudness of each utterance is scaled

9A fact that was unknown to the author at the time of the decision towards HMM-based synthesis.
10HMM states are not contained in the XML representation and are extracted by separate means;

they are appended to phoneme IUs instead of forming a separate layer of IU information.
11MaryTTS uses CARTs with non-local features to determine HMM states, impeding the incre-

mentalization of this processing step.

187

7 Incremental Speech Synthesis

in a post-processing step a�er synthesis. �is scaling was changed to an ad-hoc
incremental re-scaling method so that audio samples become available as soon as the
�rst parameter frame is consumed.
InproTK’s synthesis uses a pull-based approach that is driven by the audio dispatch

component aiming to keep its output bu�er full. �e dispatcher pulls audio samples
from the vocoder which pulls its parameter frames from the phoneme IUs. Phoneme
IUs autonomously perform parameter optimization from the attached HMM states
(taking into account their neighbours’ states as proposed by Dutoit et al. 2011 for co-
articulation) when �rst queried for a parameter frame. �is pull-based pipeline below
the phoneme layer – which is convenient for just-in-time querying – stands in oppo-
sition to InproTK’s push-based incremental processing scheme based on incremental
modules (which is convenient to push forward new results as they become available).
�e two approaches can be mediated by IU updates (as introduced in Chapter 4.2.2)
as shown in Figure 7.7, where a higher-level processor (e. g. an incremental natural
language generation, iNLG, component) registers as update listener to the chunks
that it outputs. It will then be informed about the nearing completion of the chunk
and can add a continuation in time. �e vocoder updates each PhonemeIU’s progress
�eld as it passes along.

7.3.1 Incremental Speech Synthesis in INPROTK

InproTK provides several interfaces to using and manipulating incremental speech
synthesis that cater for di�erent needs. �is subsection �rst presents utterance trees
for incremental synthesis where pre-planning is possible, and then introduces the
generic iSS component in InproTK which supports incremental utterance speci-
�cation (including revocation of yet-to-be started utterance chunks). �irdly, the
low-level interface to prosody adaptation is presented that allows immediate control
over pitch and tempo. Finally, some autonomous hesitation capabilities are presented
that reduce the real-time pressure on higher-level components.

7.3.1.1 Utterance Tree-based iSS

Utterance trees for incremental speech output were introduced by Skantze and Hjal-
marsson (2010). An utterance tree is a pre�x tree of possible utterance developments,
as shown in Figure 7.6 (le� side). Skantze and Hjalmarsson’s utterance trees use a
granularity of phrases which are synthesized in isolation (and non-incrementally);
as a result, there is a trade-o� between higher incrementality (which require smaller
phrases), and higher synthesis quality (which increases with larger phrases, especially
in terms of prosody). In contrast, InproTK’s utterance trees are more �ne-granular,
at the word level., and at the same time linguistic pre-processing is performed on

188

7.3 Incrementalizing Speech Synthesis

please thedelete blue

green

red

take

‹uh›

long

‹uh›‹uh›

Figure 7.6: iSS based on utterance trees uses multiple forward-pointing same level
links, one of which is selected for synthesis (a); selection can be changed
until synthesis reaches the link, for example using a demonstrationGUI (b).

full paths through the utterance tree, resulting in high-quality connected speech
synthesis. As a downside, all utterance variations need to be known (and processed)
before the utterance starts (which may incur some utterance-initial delay).12
Utterance trees provide for very fast switching between alternative utterance con-

tinuations, as all pre-processing has been performed and switching is only a matter
of changing forward-pointing same level links (cmp. Chapter 4.1.1). Figure 7.6 (right
side) shows a demonstration interface that allows to select utterance branches by click-
ing appropriate buttons (which change the forward-pointing SLLs) until immediately
before the preceding word’s last phoneme has been completed.
An early implementation of utterance trees was used in the experiment reported in

Section 7.4. Utterance trees can be usedwhenever all possible utterance alternatives are
known beforehand. Trees can be synthesized multiple times, so that even utterances
with many alternatives incur only a limited overhead, if they are used repeatedly (e. g.
in a deployed SDS).

7.3.1.2 An Incremental Module for Speech Synthesis

Utterance trees have no direct interface to the add/revoke processing scheme of
InproTK’s incremental modules (cmp. Chapter 4.2.1). Speci�cally, incremental mod-
ules only support one-best hypotheses, whereas an utterance tree holds multiple
alternatives. At the same time, incremental modules support later addition of incre-
mental units, as well as revocation and replacement of IUs, which is not supported for
utterance trees (especially: a clear interface for this is missing). Hence, an incremental
speech synthesis module was developed as an alternative to utterance trees, to better

12As a consequence, utterance trees do not scale well to many options, as the tree’s paths (and hence
pre-processing e�ort) grows exponentially to the number of variable elements in the utterance.

189

7 Incremental Speech Synthesis

iSS
some provider

some input IU

chunkIU
1

crawling
vocodernearing completion?

 →request processing

started? update chunk→

the turnscar

ð tkə rɑ nɜː s

Figure 7.7: IU updates mediate between push-based IU processors and pull-based
just-in-time iSS processing.

integrate with the remainder of InproTK and to cater for utterance extension and
manipulation.
�e iSSmodule accepts ChunkIUs as input. Chunks can contain single words or

phrases or even full utterances,13 and this granularity can be mixed freely. However,
revocation of content is limited to full chunks, that is, a providing module needs to
decide on the granularity at which chunks may need to be revoked to determine the
production granularity. For ease of use, the iSSmodule also accepts WordIUs, which
are automatically converted to chunks.
By default, the iSSmodule adds an IU update listener to the second to last phoneme

of every phrase which updates the ChunkIU as soon as that phoneme is started to be
produced. In that way, the providing module can take action before synthesis runs
out of material as shown in Figure 7.7.
�e phoneme lookahead for updates is con�gurable and in�uences prosodic quality;

see Section 7.6. A fully incremental output pipeline based on incremental natural
language generation and iSS will be presented in Section 7.5.

7.3.1.3 Very Low-Latency Prosody Adaptation

InproTK provides a low-level interface to manipulating planned pitch and tempo.
Pitch is one of the parameters that are input into the vocoder at every frame. Hence,
pitch can be manipulated until immediately before the corresponding frame is synthe-

13It is for this �exibility that the theory-free name ‘chunk’ was chosen over alternative names, such as
‘phrase’, which would trigger the question whether intonation phrases, syntactic or pragmatic phrases
are meant. In fact, the iSS component is completely agnostic towards this question, though synthesis
seems to work best with some sensible phrasing inside chunks (cmp. Section 7.6).

190

7.3 Incrementalizing Speech Synthesis

Figure 7.8: A graphical interface to demonstrate and test low-latency prosody adapta-
tions (pitch and tempo) to incremental speech synthesis.

sized. Currently, PhonemeIUs provide an interface to shi� the pitch of all contained
frames by a given value (in semitones).
Changes to planned durations should ideally re-trigger HSMM optimization to

result in high quality synthesis. However, HMM states and their durations are de-
termined in one step by MaryTTS’s CARTs (and, as explained above, these CARTs
use non-local features, defying incremental processing). �us, for the time being, a
simplistic strategy for duration changes has been implemented: when the duration of
a phoneme is changed a�er pre-processing has been performed, no re-optimization
occurs, but the number of frames necessary for the given duration is reached by
repeating (or skipping) frames that resulted from the original optimization for in-
creased (or decreased) durations, respectively. �is coarse method certainly results
in sub-optimal synthesis but allows to easily change the duration even of phonemes
that are currently ongoing.
A graphical demonstrator of the low-level interface to prosody adaptation is shown

in Figure 7.8 and allows tempo changes up to half/double speed, and pitch changes
by one octave up and down that are immediately re�ected in ongoing synthesis.
While synthesis quality (and naturalness) degrades for large modi�cations, small
adjustments has no impact on synthesis quality and naturalness, according to the
author’s (informal) testing.
So far, loudness adaptation has not been implemented in InproTK. It could easily

be added by scaling the signal magnitude a�er vocoding (which, however, would not
model articulatory changes that correlate with loudness; MaryTTS does not seem to
model loudness e�ects, either). A more thorough approach would be to manipulate
vocoding parameters, or to include strength in an incremental HMM state selection,
which would also help to model loudness e�ects on voice quality.

7.3.1.4 Automatic Hesitation

One advantage of incremental speech synthesis is the capability to start speaking
before the full utterance is speci�ed. However, as a result the incremental synthesizer

191

7 Incremental Speech Synthesis

may reach the end of the fully speci�ed part of the utterance before a continuation is
available. �e standard behaviour of the incremental module in this case is to end the
(un�nished) utterance; any later continuation will simply be handled like the start of
a new utterance (i. e. without prosodic integration to the preceding part and without
notifying the user that some speech production delay is occurring). To avoid this
behaviour, special HesitationIUs can be inserted as a precautionary measure at the
end of the speci�ed part of the utterance.
Hesitations are realized if no continuation for the utterance becomes available in

time (by saying “hm”). Otherwise, if a continuation is available, hesitations are skipped.
Skipping works by the hesitation itself automatically changing its duration to 0 as
soon as a continuation is same-level-linked to it (the HesitationIU can be said to be an
active IU). If the continuation becomes available while the hesitation is in progress, it
is aborted immediately and synthesis switches to the continuation. �us, hesitations
do not take up any additional time (as in the system by Skantze andHjalmarsson 2010)
but only �ll the pause fromwaiting for the continuation. �e realization of a hesitation
is currently pre-computed and does not integrate prosodically with the preceding
speech. �is is, however, not a grave problem as hesitations occur in passages that are
dis�uent anyways.

7.3.2 Conformance to the Requirements

�is subsection summarizes, to what extent the incremental speech synthesis that is
part of InproTK meets the requirements set out in Section 7.1.
iSS supports changing the content of ongoing utterances. If all alternative outcomes

of the utterance are known beforehand, utterance trees can pre-compute all of them
and switching of alternatives remains possible until immediately before one of the
options is started to be realized. If alternatives cannot be enumerated beforehand,
iSS using the add/revoke-based processing scheme of incremental modules allows to
manipulate ongoing utterances. However, this solution requires some lookahead to
account for the necessary linguistic re-processing of the utterance and the integration
of its results. Furthermore, the later chunks are integrated into the utterance, the
more in�uence this has on overall prosodic quality (cmp. Section 7.6).
As outlined above, synthesis proper has been ‘incrementalized’ completely in

InproTK, with �rst vocoding frames becoming available a�er parameter optimiza-
tion for the �rst phoneme has been completed and audio samples become available
while processing this frame. Subsection 7.5.3.1 gives results for how long this takes
in practice. Linguistic pre-processing and HMM state selection remain non-incre-
mental. However, pre-processing can be performed on just an initial chunk of the
full utterance with the iSS incremental module.

192

7.4 �e Merit of iSS

Both tempo and pitch can be manipulated freely and until immediately before each
frame that is to be vocoded (resulting in a maximum latency of 5ms in addition to
audio bu�ering). Loudness scaling could in principle be performed with even lower
latency.
In an experimental system (cmp. Section 7.4), hesitations are inserted that au-

tonomously adapt their own and the preceding few phonemes’ duration in the absence
of a continuation of the ongoing utterance to account for supply di�culties in the
processing pipeline. �e standard iSSmodule does not currently insert hesitations
but instead �nishes the utterance if no more material is coming in.
�e vocoder updates the progress �eld of every phoneme that it visits (from up-

coming via ongoing to completed). Interested components can use IU update listening
to be informed about these progress states, be it on the phoneme, word, or phrase
level.
Finally, iSS, just like MaryTTS itself, runs at multiple times real time. However, iSS

starts to output speech while processing is still ongoing, thus most of the processing
time is folded into the delivery time, which results in a much more reactive system
than when using standard, non-incremental synthesis (cmp. Subsection 7.5.3.1).

7.4 The Merit of iSS

�is section investigates the merit of using incremental speech synthesis, as compared
to non-incremental speech synthesis, in a highly dynamic environment.
In a highly dynamic environment the rate of change in the environment to which

the system must reacts occur in intervals that would allow only few utterances to
�nish as planned. A paradigmatic example of such a domain is sports commentary,
which has received some attention in the natural language generation community. For
example, Chen andMooney (2008) present a system that learns from hand-annotated
data when and what to comment on. Attention seems to have been placed more
on truthfulness of the content, though, as, judging from videos provided on their
website,14 the formulations that are produced are rather monotonic (“pink7 dribbles

towards the goal. pink7 shoots for the goal. pink7 passes to...”). More im-
portantly for the present discussion, the delivery of a produced utterance does not
seem to be tied to the actual temporal occurrence of the events. Repeatedly, utterances
are synthesized long a�er the fact that they describe which sometimes has become
obsolete at that point (actually, in the example, the goal is scored while the system
talks about some pass).
Lohmann, Eschenbach, andHabel (2011) describe another domain that can be called

highly dynamic: a system that adds spoken assistance to tactile maps for the visually

14http://www.cs.utexas.edu/users/ml/clamp/sportscasting/

193

http://www.cs.utexas.edu/users/ml/clamp/sportscasting/

7 Incremental Speech Synthesis

impaired. In their settings, users can move around on a computer representation of a
map with a hand-held haptic device (which gives force feedback when the device is
run into a ‘wall’). Users are given spoken advice about the currently traversed streets’
names, the relation of streets to each other, and to other map objects in the user’s
vicinity. Such exploratory moves by users can become rather quick, which in the
system they describe can lead to output that comes late, referring to a position that the
user has long le�. While their prototype system was rated as helpful in a user study,
many of their test subjects noted that advice was o�en uttered very late (Lohmann,
Kerzel, and Habel 2012). �is can be explained partially from the delays incurred
by generating and synthesizing the whole utterance before starting to speak it, and
additionally by the fact that ongoing utterances could not be changed (Kris Lohmann,
p. c. Hamburg 2012).

7.4.1 Domain and System

�e example domain that is used in the system presented here is a highly dynamic
commentary domain (which was brie�y introduced in Figure 7.2 and which is de-
picted in Figure 7.9), combining properties of the domains mentioned above (sports
commentary and map exploration): the CarChase domain. In the domain, a car
drives around the streets on the map and a commentator (supposed to be sitting in
a helicopter observing the scene from above) comments on where it is driving and
what turns it is taking.
�e car’s itinerary in the domain simulator is scripted from a con�guration �le

which assigns the target positions for the car at di�erent points in time and from
which the simulator animates the motion and rotation of the car. �e speed of the car
is set so that the event density is high enough that the setting cannot be described
by simply producing one utterance per event – in other words: the domain is highly
dynamic.
�e task for the commentator is to generate a natural spoken commentary, where

the temporal proximity of events and related spoken realization is important to ensure
relevance (i. e. situations such as the one in the system by Chen and Mooney (2008)
where the system still talks about a pass while a goal is scored, should be avoided).
�e target for this section is to assess the principled advantages that incremental

speech synthesis brings about, but not the possibility of incrementally (or non-incre-
mentally, for that matter) generating the natural language expressions for the com-
mentary task. �us, no NLG component is used to generate commentary based on
the car’s motions. Instead, the commentary is scripted from the same con�guration
�le that controls the car’s motion on the board. However, great care was taken while
devising the con�gurations not to put unrealistic assumptions about NLG into the
hand-written scripts: events are only to be commented on, once a speci�c event (such

194

7.4 �e Merit of iSS

Figure 7.9: �e map shown in the CarChase domain, including the car on one of
its itineraries (red). At the depicted moment, it can be assumed that the
car will take a turn, but it remains unclear whether to the le� or right. A
second itinerary is shown in blue below.

as turning right) has become visible on the board. However, some reasonable foresight
(based on domain knowledge) is assumed, such as �guring out that the car will turn
(either way) when it approaches a T-junction (as depicted in Figure 7.9, red path).
�e example in Figure 7.2 showed that incremental speech synthesis can make use
of the partial ‘turn’ information by generating a partial utterance and �lling in the
direction of the turn event later. In contrast, a non-incremental system can only start
to inform about the event once it has actually occurred (at t3 in Figure 7.2).
Some other settings were included which are less clear cut than the previous ex-

ample: the lower, blue path in Figure 7.9 results in the incremental system uttering
“The car enters the roundabout and takes the first uh second exit”, that is, it
has to correct itself. Furthermore, events can actually come later than expected by the
incremental realizer, which, in the implemented system, results in hesitations (“hm”)
being uttered until the event occurs and triggers the continuation of the utterance. In
such situations, incremental output realization need not necessarily be advantageous.
�e system as used in the evaluation reported below was based on an early version

of utterance trees (cmp. Subsection 7.3.1.1) which still su�ered from several bugs in
parameter frame handling, resulting in spectral distortion at branches in the utterance

195

7 Incremental Speech Synthesis

tree. Furthermore, prosodic processing was limited to individual chunks of words, so
that there was no prosodic integration of the full utterance.

7.4.2 Evaluation

To evaluate the incremental system’s realizations, it is compared to a non-incremental
baseline system which is unable to alter speech incrementally and hence cannot
use the method of extending an ongoing, partial utterance. Instead, the baseline
system always produces full utterances (which contain commentary on single events,
instead of concatenating descriptions for events to complex utterances as in the
incremental system). In order to ensure the temporal proximity of delivery with the
causing event, it was assumed that an NLG for the domain could mark utterances as
optional: incoming optional utterances are skipped if the component is still speaking
the remainder of the previous utterance; non-optional utterances abort and replace
any ongoing utterance. All ‘turn’ events in the domain were marked as optional, all
street identi�cation events were marked as non-optional.
4 di�erent con�gurations were constructed in which the timing of events was varied

(by having the car go at di�erent speeds, or by delaying some events), resulting in 9
scenarios in total. Both systems’ output for the 9 scenarios was recorded with a screen-
recorder, resulting in 18 videos that were played in random order to 9 participants
(university students not involved in the research). Participants were told that various
versions of commentary-generating systems generated the commentary in the videos
and that the commentary was generated purely on the basis of the running picture in
the videos. �e participants were then asked to rate each video on a �ve-point Likert
scale with regards to how natural (similar to a human) the spoken commentary was
(a) formulated, and (b) pronounced. In total, this resulted in 81 paired samples for
each question.
�e assumption (and rationale for the second question) was that the incremental

system’s formulations would result in higher ratings in the �rst question (regarding
human-like formulation). At the same time, it was hoped that the acoustic (and
prosodic) artifacts resulting from incremental processing would not lead to a signi�-
cant downgrade in the second question (regarding human-like pronunciation). In
order to not draw the subjects’ attention towards incremental aspects, no question
regarding the timeliness of the spoken commentary was asked for explicitly.
�e incremental system generated one or more hesitations in 3 of the 9 scenarios.

Of course, hesitations make overt a planning/formulation problem and can be ex-
pected to result in lower ratings in the formulation question. Furthermore, synthesis
quality is especially weak surrounding hesitations (in the early prototype) so that low
pronunciation ratings can be expected as well.

196

7.4 �e Merit of iSS

very
little

a little

neutral

a bit

very
much

a) formulation b) pronunciation

noHes

incremental strategy

baseline strategy

hes

Figure 7.10: Mean ratings of formulation and pronunciation quality for the incremen-
tal system and the baseline system. Formulation quality is di�erentiated
between utterances requiring hesitations in the incremental system.

7.4.3 Results

�e mean ratings for both formulation quality and pronunciation quality for the
incremental and baseline (non-incremental) systems is shown in Figure 7.10. As can
be seen in the �gure, mean ratings for the incremental system are higher than for
the baseline system. �e median of the di�erences between the ratings for the two
conditions is 2 points on the Likert scale for question (a) and 0 points for question
(b) (means of 1.66 and 0.51, respectively), favouring the incremental system.

�e sign test shows that the advantage of the incremental system is clearly signi�cant
for question (a) (68+/9=/4-; p < 5e-16) and question (b) (38+/30=/13-; p < .0007).
Regarding question (b), one could argue that di�erent formulations may have entailed
di�erent e�ects on pronunciation quality and hence paired testing is inadequate. A
non-paired t-test for question (b) also shows the highly signi�cant advantage of the
incremental system (p < .0012).
�us, it is safe to say that the production strategies enabled by incremental speech

synthesis (i. e. starting to speak before all evidence is known and extending the ut-
terance as information becomes available) allows for formulations in the spoken
commentary that are favoured by human listeners.
Interestingly, the subjects in the study also rated the incremental system’s pro-

nunciation as more natural than the non-incremental synthesis (however, note the
larger proportion of equal ratings for that question). It is a fact that the manipulations

197

7 Incremental Speech Synthesis

short utterances,

one per event

(standard system)

<
incrementally

expanded utt’s.

(w/ hesitations)

<
incrementally

expanded utt’s.

(imperceptibly)

Figure 7.11: User preferences of system behaviour in the CarChase domain: incre-
mentally completed utterances that integrate events into the ongoing
synthesis are preferred over standard behaviour, even if this requires short
hesitations.

to synthesis required for incremental processing (and the bugs that existed in the
early prototype that was used in the experiment) can only systematically result in a
deterioration of the synthesis quality. It appears that subjects pardoned bad synthesis
quality (which occurs in both system versions for certain words) more easily when
overall formulation quality is better. �is is also evidenced by the fact that ratings for
the questions are moderately correlated (Pearson’s r = .537).
It turns out that subjective ratings for the incremental system in the 3 scenarios con-

taining hesitations were signi�cantly worse than those scenarios without hesitations,
for both formulation and pronunciation (t-tests, p < .001 and p < .01, respectively).
�is result indicates that subjects do not simply accept system hesitations as inevitable
(given that there was simply no evidence yet where the car would turn, for example).
However, when comparing the incremental system with the baseline system for

these 3 scenarios that required the incremental system to output hesitations, the
incremental system’s formulations with hesitations are still rated signi�cantly better
than the baseline system’s (sign test, 18+/5=/4-; p < .005) while there is no e�ect on
pronunciation in these cases.

7.4.4 Discussion

�is section has aimed to assess the merit of iSS, that is whether it’s worth the e�ort.
An early prototype of iSS was used in a highly dynamic environment, where non-
incremental synthesis could only be used with simple, short, and hence uninspiring
utterances due to the high rate of change in the environment.
�is author would argue that naturalistic, conversational settings of all kinds can

be considered “highly dynamic”, as they all require constant revisions and reactions
to external events (such as listener feedback or the absence thereof, Clark 1996).
However, it was much easier to make the point here with a proof-of-concept system
in the simple, yet highly dynamic commentary domain.

198

7.5 Example Application: Integration with Incremental NLG

In the commentary domain, a clear user preference for system behaviour emerges,
as shown in Figure 7.11: subjects prefer utterances that are incrementally expanded as
more information becomes available and can be integrated into the ongoing utterance
(i. e. system behaviour that is enabled by incremental speech synthesis) over standard
behaviour where every event results in a relatively short system utterance which is not
connected (in terms of formulation or prosody) with any preceding or already ongoing
utterance. �is preference remains even if incremental utterance realization requires
hesitations in order to keep the utterance going in cases where utterance timing has
been mis-planned (i. e. the system should have spoken more slowly, or started later,
because it runs out of material before more content becomes available). However,
systems should aim to hesitate as rarely as possible because subjects dislike utterances
with hesitations when compared to utterances where incremental realization goes
smoothly and is imperceptible to the user.
Finally, and unexpectedly, subjects rated higher the pronunciation quality of iSS

compared to non-incremental synthesis even though objectively it was lower. How-
ever, the speech that was synthesized was more adequate. A possible conclusion is
that synthesis quality actually matters very little in comparison to interaction quality,
and that speech synthesis systems should be evaluated in context, or at least taking
into account the sorts of interaction behaviour that they support.

7.5 Example Application: Integration with Incremental NLG

�is section highlights the technical feasibility of using iSS as part of an incremental
spoken output pipeline for a spoken dialogue system, by show-casing an example
application for adaptive information processing (as originally presented by Busch-
meier et al. 2012). One indication in the previous section was that subjects appear
to prefer the longer, integrated utterances that were made possible by iSS over short,
separated, staccato utterances that systems based on conventional synthesis would be
forced to fall back to in order to achieve reactive behaviour. Furthermore, the only
incremental output generated in one of the interactive example systems so far, were
very short feedback utterances in the Pentomino Select system in Chapter 6.1.2. �is
section speci�cally investigates how an incremental output pipeline can be used to
realize longer utterances in an adaptable fashion and with little utterance-initial delay
as is required for use in a highly interactive system.
�e following subsection introduces and discusses the exemplary use-case for the

incremental output pipeline, and Subsection 7.5.2 brie�y describes the implemented
system which is evaluated in Subsection 7.5.3. Subsection 7.5.4 discusses the results.

199

7 Incremental Speech Synthesis

Sekt

und

Krin
gel

201
3-05
-16

201
3-05
-16

17:3
0-18
:00

17:3
0-18
:00

Vor
trag

201
3-05
-16

201
3-05
-16

16:0
0-17
:30

16:0
0-17
:30

Figure 7.12: Example of two consecutive events in the calendar domain.

7.5.1 Use-Case: Adaptive Information Presentation

�e exemplary use-case for adaptive information presentation is theCalendar domain.
In the domain, calendar events consist of a title, date, and duration. Information
presentations that are to be read out by the system can be the reminder of one or
multiple, possible sequential events, the rescheduling of events (e. g. caused externally
by a secretary), or scheduling con�icts that may need to be resolved. Figure 7.12 shows
two consecutive calendar events as an example.
Rescheduling or addition of events could potentially be triggered while information

presentation is in progress, but this will be rare in practice. For this reason, an
additional noise source is introduced into the domain such as might occur while
using the Calendar system on the side of a busy street: randomly, every 2 to 5 seconds,
a one-second random pink noise event is played that makes understanding any
ongoing speech impossible. �ese noise events turn the domain into a highly dynamic
environment, as they prevent the successful non-incremental delivery of almost all
information presentations in the domain. Instead, a successful system must adapt to
the noise.
Of course, the interspersed noise is just a placeholder for any type of adaptation

signal that co-occurs with the system’s speech. Other possible signals could be listener
feedback (Buschmeier and Kopp 2012) that should results in adaptation to the system’s
ongoing speech output.
In the Calendar domain, noise events occur randomly and hence systems have to

react to them on-the-�y. �is distinguishes the domain from the CarChase domain in
the last section, where it was possible to pre-compute an utterance tree to encompass
all alternative developments in the given con�guration �le. �e Calendar domain
hence takes another step to realistic conversational environments.

200

7.5 Example Application: Integration with Incremental NLG

Calendar

Noise Detector

Speech Synthesis

Language

Generationres
tar
t

noise

chunks

of w
ords

event
description

speechinterrupt

Figure 7.13: Interplay of components in the system for adaptive information pre-
sentation: when noise is detected while information is being presented,
synthesis is interrupted and iNLG is re-triggered once the noise has ended.

7.5.2 Implemented System

A schematic overview of the system for adaptive information presentation is shown
in Figure 7.13: an event description that is to be presented is passed to the incre-
mental natural language generation (NLG) module, starting the processing chain.
As explained by Buschmeier et al. (2012), iNLG determines the overall layout of the
utterance to be produced (the micro-content plan), dividing the utterance to be pro-
duced into shorter sub-units that correspond roughly to intonation phrases. Event
descriptions in the domain can be complex and there are usually six to seven sub-units
for a full utterance. Sub-units are in the form of incremental micro-planning tasks
(IMPTs). For every IMPT, the surface realization component of the NLG generates
the corresponding words to be produced using the SPUD approach (Stone et al. 2003).
Only this latter surface realization task is performed incrementally, at the granularity
of IMPTs; it is, however, the computationally expensive part.
�e surface realization of the IMPT (a sequence of words) is then sent as one

ChunkIU to the iSS module, and integrated into ongoing speech as described in
Subsection 7.3.1.2 above. Processing occurs just-in-time, with the surface realization
component being triggered into action by a previous chunk’s nearing completion,
via IU update messages as was already shown in Figure 7.7 and is repeated for conve-
nience in Figure 7.14. �e implemented system uses a relatively large lookahead, as a
precautionary measure to keep the prosodic in�uence of incremental processing as
low as possible. Speci�cally, the system realizes two chunks utterance-initially (as can

201

7 Incremental Speech Synthesis

iSSiNLG shared buffer

chunkIU
2

chunkIU
1

on completed: notify iNLG

on ongoing: update chunk

with subjectthe

w ɪ əðð ʒb tɛs ʌ kd

crawling
vocodermoves along with time

Figure 7.14: IU updates are set up to always keep one fully generated but not yet realized
chunk of words as a bu�er, to avoid real-time issues and to minimize the
in�uence of incremental prosody generation.

be seen in Figure 7.14 and then adds a next chunk when the currently pen-ultimate
chunk is started to be synthesized (see the following section for a thorough discussion
of how much lookahead would should be used).
Another module in the system, the noise detector, connects to both iSS and iNLG.

On noise onset, it informs iSS to interrupt the ongoing utterance a�er the current
word. �is interruption is realized in the iSS module internally by breaking the
forward-pointing same-level links leading the crawling vocoder to �nish a�er the
currently ongoing word, as no next word can be retrieved. iNLG is informed on the
end of the noise burst, triggering it to regenerate the interrupted sub-utterance chunk
and to re-send it to iSS. It should be noted that the implemented system does not in
fact use a real noise source and noise detector. Instead, the random noise simulator
plays back a burst of 1000ms of pink noise every 2 to 5 seconds and informs the other
modules with a delay of 300ms a�er noise starts and ends, respectively. A real noise
detector should be able to give accurate detection quality with a similar or even lower
delay.
In order to react to external events (such as noise having interrupted an ongoing

IMPT), the surface-realization component of iNLG is able to adapt the verbosity and
redundancy with which chunks are realized (Buschmeier et al. 2012). For example, the
title of an event could be realized simply as “Vortrag”, or “Betreff: Vortrag”, or “mit
dem Betreff Vortrag”, depending on how verbose the item should be verbalized.
Redundancy of presentation applies to dates, for example, where an event can be
characterized as “tomorrow”, or “May 15th”, or both: “tomorrow, Mary 15th”. While
o�ending the optimality criterion, redundant information can serve communicative
functions and help to increase the probability of the message being understood
(Buschmeier et al. 2012, citing Reiter and Sripada 2002).
�e implemented system is lacking a model to decide what changes in verbosity

and redundancy should ideally be taken when re-phrasing an IMPT. Speci�cally, it

202

7.5 Example Application: Integration with Incremental NLG

does not take into account whether an IMPT is aborted early on, or only late in the
phrase (or more speci�cally, does not relate the onset of the noise event with what
information has already been conveyed by the synthesizer, cmp. Matsuyama et al.
2010). Instead, the system uses a simple heuristic (which is not based on an empirical
study or deep theoretical insight): verbosity is reduced by one level, and redundancy
is increased by one level for the �rst chunk a�er a noise burst, which results in a
noticeably di�erent surface realization. Furthermore, the interruption by noise leads
to the iSS generating the �rst chunk a�er noise with a new sentence onset intonation.
�e system also implements two baseline behaviours: one is to ignore noise alto-

gether (as if the system did not notice it) and handles the domain as if it were not
highly dynamic, the other is to pause playback of the ongoing utterance on noise
onset (potentially in the middle of a word) and to resume where it le� o� a�er the
noise burst. �is pause/resume behaviour can be considered state of the art (Edlund
2008).

7.5.3 Evaluation

�is subsection discusses the performance of the implemented system for theCalendar
domain both in terms of measured reactivity for the utterance onset, and in user
ratings of the full system when compared to simpler (previously state-of-the-art)
solutions.
Analyses are performed on 9 settings within the calendar domain (4 sequences

of two events, 3 con�icts between events, and 2 reschedulings) that result in 6 or
7 phrases each. Both number of words and total audio duration depend on the
interspersed noise. If undisturbed by noise, utterances contain on average 27 words
(composed of on average 5.3 phonemes) and take approximately 10-12 seconds each.

7.5.3.1 System Response Time

�is subsection evaluates the system response time, that is, the time until the �rst
audio sample is delivered to the sound card a�er the utterance start is requested. As
was mentioned multiple times, incremental processing can take advantage of folding
processing time into delivery time, which is especially relevant for long utterances
(that incur longer processing times), and adaptive behaviour (where it becomes
impossible to pre-compute all possible realizations).
A non-incremental system’s response time is the sum of the times taken by all

modules involved to do their work. An incremental system, in contrast, can fold large
amounts of its processing time into delivery time; what matters is the sum of the onset
times for each module, i. e. the time until a �rst output becomes available for the next
module to start processing.

203

7 Incremental Speech Synthesis

Table 7.1: Processing time per processing step before delivery can begin (in ms; aver-
aged over nine stimuli taking the median of three runs for each stimulus;
calculated from log messages; code paths preheated for optimization).

non-incr. incr.

iNLG-microplanning 361 52
Synthesis (linguistic pre-processing) 217 447
Synthesis (both HMM and vocoding) 1004 21

total response time 1582 519

Table 7.1 summarizes the runtime for the three major steps in output production
of the system using the 9 exemplary settings (without interspersed noise), for full,
non-incremental processing, and for incremental processing of the onset only. As can
be seen, especially iNLGmicroplanning and speech synthesis proper pro�t greatly
from incremental processing. For both processing steps, processing e�orts scale with
the characteristic processing unit sizes (chunks, and phonemes/HMM optimization
frames, respectively).
In contrast, linguistic pre-processing using MaryTTS does not scale with the num-

ber of words processed. Instead, constant processing overheads (parsing and re-
generating XML documents) appear to be the limiting factor, and occur per call to
MaryTTS’s linguistic pre-processing pipeline. Furthermore, the iSSmodule is �awed
in that respect that multiple chunks that are added to the input bu�er in one step result
in multiple calls to linguistic pre-processing, with the second call’s result immediately
superseding the �rst. As the system uses two chunks utterance-initially, the time
taken for linguistic pre-processing doubles for the incremental system. (�is �aw
could easily be �xed, however Section 7.6 below shows that the use of two chunks of
lookahead is more than would be necessary, making this issue irrelevant for future
systems.)
Taken together, incremental processing reduces the system response time by over

one second as compared to non-incremental processing. Furthermore, the utterance-
initial delay would be further reduced to around 300ms if iSS would avoid redundant
calls to linguistic pre-processing.

204

7.5 Example Application: Integration with Incremental NLG

very little

neutral

very much

A. ignore noise B. pause/resume C. incrementally
rephrase

Figure 7.15: Boxplots showing the subjective naturalness ratings for the three systems
in the Calendar domain.

7.5.3.2 Subjective Evaluation

�is subsection reports the results of a user study that evaluated the naturalness of the
implemented strategy for adaptive information presentation in the Calendar domain.
Utterances for the same 9 exemplary settings as above were recorded with inter-

spersed random noise using the baseline system A that completely ignores noise,
the pause/resume baseline system B (which, however, does not adapt the surface
realization to noise), and the full, incremental systemC that adapts and re-synthesizes
a�er the noise burst, starting from the chunk that was being produced at noise onset.
�e resulting 27 stimuli were played to participants in random order. Additionally,

before playing the stimuli that contained noise, two examples were played that did
not contain any noise interruptions so that participants could get an impression of
the system’s utterances in the domain.
Twelve PhD students (not involved in the research) listened to and rated the stimuli.

Participants listened to each stimulus once and rated it immediately a�erwards by
noting their agreement to the statement “I found the behaviour of the system in this
situation as I would expect it from a human speaker” on a 7-point Likert scale.
Boxplots showing the ratings for the three systems are shown in Figure 7.15. As can

clearly be seen in the �gure, the incremental system was rated much more natural
(median rating of +2 on the scale against −2 for both baseline systems). A Friedman
rank sum test supports this impression, revealing a highly signi�cant di�erence
between the perceived human-likeness of the three systems (χ2 = 151, p < .0001). A

205

7 Incremental Speech Synthesis

post-hoc analysis with Wilcoxon signed rank tests found no signi�cant di�erence
between systems A and B (V = 1191.5, p = .91). �e fully incremental system C

however di�ered highly signi�cantly from either baseline system (V = 82, p < .0001
for system A and V = 22.5, p < .0001 for system B).15

7.5.4 Discussion

�is section has shown that fully incremental output in a highly dynamic environment
using IU modules is feasible and successful. While IU module pipelines based on
InproTK had previously been applied to input processing, they were here successfully
applied to output processing which is subject to real-time pressure.
�e just-in-time incremental output production enables the implemented system

to start outputting rather long and complex information presentation utterances with
a vastly reduced response time (speci�cally, a reduction by over a second, which could
be further reduced to about 300ms, see next section) as compared to non-incremental
processing.
�is speed-up enables adaptive, incremental behaviour that was rated as signi�-

cantly more human-like than either of two baseline strategies. It is noteworthy that
the baseline that represents the prior state of the art – pausing during and resuming
as if nothing had happened a�er noise – was not rated di�erently than the simple,
ignorant baseline behaviour in terms of human-likeness. �is is a clear indication
that pure “surface-based” reactions are insu�cient for receptive behaviour and that
a re-generation across processing layers is necessary, which requires a �exible and
structured incremental architecture such as the IU architecture.
Results for the recall of the information presented to users can only be estimated

as recall was not measured in the user evaluation: recall for the ignorant system A

would certainly be negatively impacted by noise, as information presented during
noise would simply be inaudible. While the pause/resume system B does not present
information during noise, it requires the listener to remember the partial phrase
(possibly partial words as interruptions will o�en occur in the middle of a word)
which may be harder than if the interrupted phrase is later repeated (and rephrased)
as in the incremental system.
�eCalendar system in this section always uses a relatively large prosodic lookahead

of two phrases (ChunkIUs), that is, it did not focus on delaying higher-level decision
making. In the system, the overall layout of the utterance was �xed by NLG once in
the beginning of the utterance and could not be revised, as the domain did not call for
integration of new information to be presented, but rather to adaptation in delivery
as a response to external events (in this case noise). �us, incrementality was mostly

15�e author is highly indebted to Hendrik Buschmeier for performing these statistical analyses
which were �rst reported in the joint work (Buschmeier et al. 2012).

206

7.6 Evaluating the Prosodic Quality of iSS

used to fold processing time to result in high responsiveness, and not so much to
defer decisions to as late as possible as was the case in the CarChase system, where
the information to be conveyed could be changed until immediately before the fact,
at the cost of prosodic quality. �e following section investigates the trade-o� of late
decisions vs. prosodic quality between the two extremes covered so far.

7.6 Evaluating the Prosodic Quality of iSS

Section 7.4 showed that even if iSS produces clearly reduced prosodic quality (and
acoustic artifacts), users prefer the interactive behaviours that are enabled by iSS.
Users even rated the pronunciation quality as better than that resulting non-incre-
mental processing, even though objectively it cannot have been. Section 7.5 ‘played
safe’ the question of prosodic integration by using two iNLG chunks (roughly similar
to intonation phrases) of lookahead for prosodic processing, in order to reduce the
in�uence of incremental processing on prosodic quality.
Relating the issue of prosodic integration to the timing metrics introduced in

Chapter 3, these two extremes can be seen as a very late �rst occurrence (FO) of
material to be included into the utterance for the CarChase system and a relatively
early FO for the Calendar system. Chapter 3 discussed timing mostly in the context
of non-monotonous input processing, speci�cally that there are trade-o�s involved
between timing and the degree of non-monotonicity (cmp. Section 3.3.2.4). Chapter 5
then developed strategies to decrease edit overhead at the cost of some timeliness of
hypotheses (cmp. Section 5.5). Input processing can be completely non-monotonous
(i. e. hypothesis changes may come arbitrarily late) and the InproTK iSRmodule opts
to in�nitely change hypotheses if need be to meet the yieldingness criterion (i. e. �nal
hypotheses are identical to a non-incremental processor’s results). In contrast, output
processing is restricted by real-time pressure: hypotheses can only be changed as long
as they haven’t been realized yet. �us, for output processing, the question is how the
timing of hypotheses in�uences the quality of the �nal result.
It should be noted that iSS in general (as implemented in InproTK) is agnostic to

the size of units that are added for later synthesis, as well as to the lookahead, that is,
how long before they need to be realized units are added. However, both lookahead
and granularity are crucial in order to devise a plausible prosody.
�is section, based on (Baumann and Schlangen 2012b), sets out to systematically

analyze the trade-o� between the lookahead used when integrating more speech
material and the resulting prosodic quality. �e following subsection discusses the
design space for incremental prosodic processing and Subsection 7.6.2 reports an
experiment in the Calendar domain aiming to �nd plausible sweet spots in the trade-
o�.

207

7 Incremental Speech Synthesis

7.6.1 The Design Space for Incremental Prosody Production

Prosody is in�uenced by long-range dependencies, as for example phrase intonation
depends on the �nality of the phrase, and rhythm clashes potentially many words
ahead may in�uence stress assignment (Levelt 1989). Nonetheless, human perfor-
mance indicates that most o�en prosody can be (and is) generated on-the-�y; Levelt
(1989) claims that most o�en rhythm can be assigned with a one word lookahead,
and intonation with even less. Current main-stream speech synthesis systems, as
outlined in Section 7.2, perform linguistic pre-processing non-incrementally on full
utterances, instead. �e iSS component described here relies on such processing,
which is e�ected repeatedly. �e goal here is to generate a prosodic assignment for
the utterance incrementally (with only limited amounts of the utterance available
and requesting further material just-in-time) that matches the prosody that would be
produced non-incrementally by linguistic pre-processing closely, but with limited
lookahead.
Imagine a system incrementally produces the utterance in Example 7.2 (with “|”

denoting chunk boundaries from iNLG):

(7.2) “am 14. Mai | zehn bis zwölf Uhr | Einkaufen auf dem Wochenmarkt”

When synthesis starts with the �rst chunk (“am 14. Mai”), the questions arise of
whenmore words need to be added, and of how many words should be added at a
time. �ese are the questions of lookahead and granularity, respectively. (Of course,
non-incremental processing would add all words immediately.) When more words
are processed, there is also the question of how much of the already known words
should be taken into account as le� context. �e full design space for incremental
prosody production is illustrated in Figure 7.16.
�e implemented system adds material at the granularity of chunks (as they are

generated by the iNLG component) which roughly correspond to prosodic phrases. A
�ner granularity (e. g. at the word level) could potentially improve timing behaviour, as
it allows to change upcoming speech until later in the utterance (under the assumption
that it is hard to change anything that is already ongoing, which is a limitation of the
current implementation). However, adding full phrases at a time has the advantage of
feeding the non-incremental linguistic pre-processing pipeline with ‘sensible’ input
for prosodic assignment. In other words: querying for “zehn bis zwölf Uhr” will
likely better match the prosody of the full utterance than querying for “14. Mai zehn

bis”. �us, the analysis in this section is limited to the granularity that is provided by
the iNLG component from Buschmeier et al. (2012).
Using le� contextmay provide important clues to symbolic linguistic pre-processing

about the overall layout of the utterance. Furthermore, Subsection 7.5.3.1 concluded

208

7.6 Evaluating the Prosodic Quality of iSS

when?
(lookahead)

chunk1 chunk2 chunk3

w1w0 wnwn-1

am 14. Mai | zehn bis zwölf Uhr | Einkaufen auf dem Markt

how much?
(granularity)

how much?
(left context)

Figure 7.16:�e design space for incremental prosody production. When append-
ing the chunk “Einkaufen auf dem Wochenmarkt”, the questions arise of
(a) when to do this (question of lookahead), (b) howmuch to add at a time
(question of granularity), and (c) how much of the preceding material to
reconsider (question of le� context).

that linguistic pre-processing as implemented is dominated by constant processing
overheads. �us, there is no need to limit the le� context.
Regarding lookahead, it has to be determined when a next chunk of words is re-

quested for prosodic integration. �e just-in-time principle dictates to do this as
late as possible. it is the de�nition of possible that matters here: ignoring prosodic
continuity, a next chunk should be integrated only immediately before the currently
ongoing chunk �nishes (at position wn in Figure 7.16 for the chunk “Einkaufen auf

dem Wochenmarkt”). However, to fully respect prosody and its long-range dependen-
cies, even just-in-time processing would require the full utterances immediately (to
meet this de�nition of “as late as possible”).
However, combined with using le� context, a smooth transition to a next chunk

can be produced by re-computing even the current phrase in light of its now known
continuation and adapting the prosody of those parts of it that have not been realized
yet. In the example, when chunk3 is appended, it can be processed together with
chunks 1 and 2 as le� context. It is very likely that now the part of the utterance
corresponding to chunk2 will be assigned an intonation that is much better suited for
its in-utterance position than before. When doing these re-computations in time (by
using lookahead), this better prosodic realization can be used instead of the originally
computed one for the yet unspoken part of chunk2.
�e trade-o� between the timeliness of possible speech manipulation and the

realized prosodic quality is explored systematically in the following subsection.

209

7 Incremental Speech Synthesis

7.6.2 Experiment

�is subsection explores the in�uence of lookahead on prosodic quality in incremental
speech synthesis. �e following settings for lookahead are used as experimental
conditions:
non-incremental standard, non-incremental prosodic processing is used as the

control condition and equates to an in�nite lookahead.
trivially incremental synthesize every phrase in isolation when the current phrase

ends, that is, using a zero lookahead (this strategy is used by Skantze and
Hjalmarsson 2010, and can probably be considered state-of-the-art)

only left context use a lookahead of zero, but integrate all previous material as le�
context, allowing for better prosodic connection, especially at the onset of
phrases; this setting corresponds to the arrow labelled wn in Figure 7.16.

full phrase lookahead require the next phrase before starting production of the
current phrase (so that the current phrase can be fully reconsidered taking the
next phrase into account); this setting corresponds to the arrow labelled w0 in
Figure 7.16, and was used in the original Calendar system.

Additionally, intermediate settings are denoted aswi : w1 is the setting that processes
and integrates the next chunk during production of the �rst word of the current phrase,
wn−1 integrates one word before the end of the current phrase, and so on (of course,
wn−1 can be earlier in the utterance than e. g. w3 for short phrases). (Hence, ‘full
phrase lookahead’ and ‘only le� context’ conditions can be described as w0 and wn,
respectively.)
In all conditions, update granularity is kept constant with full phrases being added

at a time. Apart from the trivially incremental condition, all conditions make use of
full le� context.
It is expected that providing le� context in the wn setting as compared to the

trivial setting will improve quality (as measured by similarity to non-incremental,
full-utterance synthesis) of the beginning of each new chunk (as it is realized taking
into account the preceding material). Increasing lookahead (i. e. moving the addition
of more material ‘to the le�’ in Figure 7.16) should additionally improve quality of the
endings of each chunk (as the ending is re-computed and integrated into ongoing
synthesis, taking into account the material of the next chunk). �ese assumptions
will be tested below.

7.6.3 Evaluation

For simplicity, the utterances from the Calendar domain are re-used (without inter-
spersed noise), and synthesized using the lookahead conditions introduced above.
Technically, this is realized by varying the position of the update triggers as was shown

210

7.6 Evaluating the Prosodic Quality of iSS

above in Figure 7.7. (For short (two word) phrases the trigger position was adjusted
to the last word in the w3 condition.) As was the case with iSR evaluations in Chap-
ter 5, an incremental system can impossibly reliably outperform its non-incremental
sibling. Hence, the focus is again on the similarity of incrementally produced results
with non-incremental results from an otherwise identical system.

�e synthesizer’s generated prosody can be measured in terms of pitch (f0 of every
voiced frame) and phoneme durations. Other factors, such as for example vocal
e�ort are not actively in�uenced by linguistic pre-processing (and would be much
more complex to evaluate). Phoneme durations for two di�erent realizations of the
same utterance are compared phoneme by phoneme. A frame-by-frame comparison
of pitch, however, is untruthful, as pitch tracks would diverge in light of di�erent
phoneme duration assignments. �e evaluation below normalizes pitch tracks to the
durations in the gold standard, that is, missing or extra pitch marks in phonemes of
di�erent duration are ignored, to keep pitch in both tracks aligned.16

7.6.3.1 Qualitative Analysis

Figure 7.17 shows part of exemplary pitch tracks generated in di�erent settings (omit-
ting some intermediate settings for clarity; phoneme durations normalized to non-
incremental condition) for one of the synthesized utterances.
As can be seen, the prosody of the output in the trivially incremental condition

(shown in red) deviates rather strongly from the non-incremental condition (shown
in black), both at phrase beginnings and endings. Phrase beginnings receive a strong
initial pitch excursion as may be appropriate for the beginning of a full utterance,
but less so for the middle of the utterance. Likewise, sentence-end intonations with
falling pitch and longer durations (not shown in the �gure because of temporal
normalization) are assigned to the end of every phrase in the trivially incremental
condition.
�e wn(only le� context) condition, which is triggered during the last word of the

ongoing phrase, successfully reduces the deviation s at phrase beginnings (avoiding
onset intonations within the utterance). However, sentence-end intonations remain,
as linguistic pre-processing assumes the utterance to be �nished a�er the current
phrase. A further problem stems from the integration of new prosodic information
which is attempted for as much content as possible by the iSS component. In the
wn condition, integration is performed up to the middle of the �nal word of the
phrase, which can result in a jump in the pitch contour preceding the phrase-�nal
phoneme. Such unnaturally sounding discontinuities could, of course, be avoided,

16Of course a more elaborate scheme can be used for the alignment, but is unlikely to radically
change the results presented below.

211

7 Incremental Speech Synthesis

p
it

ch
 (

in
 H

z)

d e: n f I 6 ts e: n t @ m aI ts e: n b I s ts v 9 l f ? u: 6 b @ t R E f

den 14. Mai 10 bis 12 Uhr Betreff . . .

control
w1
wn

trivial

Figure 7.17: Exemplary pitch tracks of part of an utterance under some of the experi-
mental conditions. De�ciencies of the trivial and only le� context settings
are highlighted in red and blue, respectively.

e. g. by gradually adjusting pitch to enforce a maximum gradient.17 Finally, conditions
w1 andw0 (w0 is not shown in the �gure for clarity) closely follow the non-incremental
pitch track.
�e author performed an informal assessment of the prosodic quality by listening

to some of the produced audio �les. Perceptually, the w0 and w1 conditions were
indistinguishable from the control condition. �e wn setting results in a ‘bored’, ‘sad’
perceived attitude of the speaker which can be ascribed to the intermittent sentence-
end intonations (realized with low pitch and lengthening) within the utterance. In
the trivial setting, the additional intermittent onset intonations, realized as intense
pitch excursions, together with the intermittent sentence-end intonations give the
impression of riding a rollercoaster.

7.6.3.2 Quantitative Evaluation

�e same 9 utterances (without noise) as in the calendar evaluation were synthe-
sized in all conditions and the resulting pitch and segment durations (as determined
from system logs) were compared with the result from the non-incremental control

17�is countermeasure was not implemented, however, as it would increase further the deviation
from the ideal, non-incrementally produced pitch track as measured quantitatively and evaluated in
Subsection 7.6.3.2.

212

7.6 Evaluating the Prosodic Quality of iSS

Table 7.2: Deviation in pitch and timing of lookahead conditions from the non-incre-
mental control condition.

condition timing deviation (in ms) pitch deviation (in Hz)
RMSE 95% quantile RMSE 95% quantile

w0 (full phrase) 1.77 0 7.11 9
w1 2.12 0 8.49 17
w2 3.76 5 11.32 26
w3 5.48 6 14.87 36
wn−1 5.32 6 17.24 46
wn (w/ le� context) 5.75 10 18.23 50
wn (trivial) 14.60 34 28.17 65

condition. A few setting/condition combinations resulted in partially faulty logging
behaviour for some utterances (which was only discovered during evaluation). In
these cases the faulty parts were excluded, leaving approximately 1200 phonemes and
11000 voiced audio frames for comparison. Mean phoneme duration is 81ms and
mean pitch is 172Hz in the control condition.
Table 7.2 summarizes how prosody (duration and pitch assignments) deviates from

the non-incremental control condition under the various lookahead conditions, using
root mean squared error (RMSE) as metric.18 Additionally, the 95% quantiles of
timing and pitch error magnitude are given.
As can be seen in the table, RMSE for both duration and pitch in thew0 (full phrase)

condition is remarkably low at less than 2 milliseconds for duration and about 7Hz
for pitch. Given the mean pitch and phoneme durations, the relative errors are about
2% and 4%, respectively. Quené (2007) reports the just noticeable di�erence (JND)
for speech tempo to be roughly 5% and Nooteboom reports a JND for pitch of “a
few percent” (Nooteboom 1997, p. 643). Furthermore, deviation is smaller than 10Hz
for more than 95% of all pitch values. For 98% of all phonemes, timing di�ers by at
most 4ms and for 98% or all pitch values deviation is at most 23Hz. �us, it is fair to
conclude that one full phrase of lookahead results in prosodic assignments that are
not noticeably di�erent (and if, then only rarely) from non-incrementally produced
prosody.
Figure 7.18 shows that deviation of both timing (in ms) and pitch (in Hz) increase

(almost linearly) the later in the ongoing phrase the next is appended, i. e. the less

18�emean error was small inmost conditions so thatmean and variance are not reported separately.

213

7 Incremental Speech Synthesis

 0

 10

 20

 30

non-incr w0 w1 w2 w3 wn-1 wn trivial

R
M

S
E

 o
f

d
u

ra
ti

o
n

 a
n

d
 p

it
ch

in
 m

s
a

n
d

 H
z,

 r
e

sp
e

ct
iv

e
ly

setting

Figure 7.18: Deviation/RMSE of pitch (green) and timing (red) plotted against looka-
head. �e more lookahead available, the better the results. Just noticeable
di�erences (JND) for pitch and timing are shown as green and red shaded
areas.

lookahead is available. �e �gure also shows conditionw1 to be still within the margin
of JND while w3 and above are likely noticeably di�erent from the control condition
(and more likely worse than better).
Quite importantly, le� context alone already drastically cuts down on pitch and

timing deviation, even when no lookahead at all is available. Signi�cance testing
shows that pitch and timing di�ers more from the control condition in the trivial
than in the wn condition (Brown-Forsythe’s modi�ed Levene’s test for variance of
the deviations, p < .00001 for both pitch and timing). In addition, mean durations
are signi�cantly longer and pitch is signi�cantly lower (t-tests, p < .00001 for both
pitch and timing), however with small e�ect sizes. �us, if no lookahead is available,
synthesis using the wn condition is clearly superior to the former state of the art of
synthesizing phrases in isolation.

7.6.4 Conclusion

�is section has analyzed the in�uence of iSS on realized prosody. Incremental
prosody production with full phrase lookahead (which integrates a next phrase before
the current phrase starts) was found to di�er only marginally (within the range of

214

7.7 Summary and Discussion

JND) as compared to standard, non-incremental prosody processing. Furthermore,
even if no lookahead at all can be used, the use of le� context greatly improves the
results of iSS as compared to trivial incremental processing that handles each phrase
in isolation.
Figure 7.18 showed that more lookahead leads to better prosodic quality, raising

the question of how much lookahead exactly should be used. Section 7.5.3.1 above
found that processing two phrases utterance-initially (which happens in the w0 con-
dition) takes twice as much time as compared to processing just a single phrase and
processing the next phrase while the �rst word of that phrase is ongoing – the w1

condition. Furthermore, book-keeping of the additional ChunkIUs that is involved in
the w0 condition increased code complexity and was a frequent source of problems
in the development of the Calendar system. At the same time, the relative prosody
performance gain ofw0 overw1 is small. �us, thew1 condition, where the next phrase
is added while the �rst word of the current phrase is being produced, can be used as
a rule of thumb, providing a good trade-o� of quality, computational performance, as
well as conceptual simplicity.

�is section treated prosodic analysis purely as a numeric comparison of (aligned)
tracks, and this is of course insu�cient for a full assessment of the realized into-
nations. Listening experiments would allow to validate and strengthen the results
and conclusions drawn. (However, as argued in the discussion of Section 7.4, ‘pure’
listening experiments do not re�ect the whole picture either, as it is the overall system
behaviour what matters most.)
�is section analyzed the “shallow” incremental prosody production that is imple-

mented in the current version of the InproTK iSS component. A “deeply” incremental
prosody model based on underspeci�ed high-level data (following the idea of triangu-
lar data-processing as outlined in Chapter 4.1.2) might help to reduce lookahead (and
correspondingly improve timing properties) and could potentially integrate changes
to a plan that is being realized much more smoothly than the current strategy which
simply replaces old for new pitch targets, resulting in discontinuities as were seen in
Figure 7.17.

7.7 Summary and Discussion

�is chapter has focused on incremental spoken output, speci�cally on incremental
speech synthesis which is a necessary low-level component that other, higher-level
components like iNLG need, in order to be of use to real systems.
iSS has been shown to enable previously unseen output behaviours in highly dy-

namic environments, and to integrate seamlessly into the incremental architecture,
showing that the IU model as implemented in InproTK equally applies to input

215

7 Incremental Speech Synthesis

and output processing. �e combination of an IUmodule for iNLG with iSS greatly
reduced system response time and again resulted in preferred system behaviour, and,
�nally, produced utterances that prosodically di�er only marginally when compared
to non-incrementally produced speech.
�e InproTK iSS component still relies on the non-incremental processing com-

ponents borrowed fromMaryTTS, which is somewhat unsatisfactory. One area for
future work is HMM state selection which is currently performed non-incrementally
(instead of just-in-time) and uses non-local features in the decision trees involved.
Future work should investigate the quality loss associated with abandoning non-local
features (or at least features that require a large lookahead) to assess whether incre-
mental HMM state selection is feasible. Implementing this feature would improve
synthesis quality when tempo and accentuation changes are performed (which may
result in acoustic artifacts in the current implementation). Chunwijitra, Nose, and
Kobayashi (2012) deal with local variance optimization for HMM synthesis. �eir
�ndings could be integrated instead of the currently used simplistic method devised
by Dutoit et al. (2011).
�e current solution for linguistic pre-processing and prosody generation does not

go by the (incremental) book. Even though the non-incremental solution is su�-
ciently fast, the fact that access to the internal structures and data used by MaryTTS’s
linguistic processing is limited from the IU network means that the prosody model’s
decisions cannot be actively controlled. A “deeply” incremental prosody model that
makes its structures available to incremental processing would provide a much im-
proved interface to prosody than is currently implemented, for example allowing
to change an utterance’s tone to ‘question intonation’ and all else (i. e. pitch and du-
ration assignments and the corresponding HMM state selection) falling into place
automatically, just-in-time and without computational overhead.
Aspects of speech synthesis speci�c to conversational settings, are planned to be

integrated into the iSS component and could easily be integrated into the whole system
in a way so that changes to emotional parameters (that could be represented in some
mood state) are kept separate from content-based aspects of prosody (to be handled
via the IU network). �e two aspects could be combined just-in-time using local rules
such as the ones by Schröder (2004) allowing for independent and immediate control
of emotional colouring as outlined in (Baumann 2012).

216

Reproduced with kind permission by BeCK, www.beckcartoons.de.

www.beck-cartoons.de

8 Conclusion and Outlook

�is chapter brie�y summarizes the thesis, concludes that the goal of the thesis –
investigating incremental processing as a means for more naturally interacting spoken
dialogue systems – has been met, and raises some questions and ideas for future work.

8.1 Summary

�is thesis investigated incremental dialogue processing in order to enable more
naturally interacting spoken dialogue systems. Chapter 2 found modular incremental
processing to be desirable for natural and e�cient interaction, as it provides for close
feedback loops and thus assists in grounding between the dialogue participants.
Chapter 3 developed an evaluation methodology for incremental processing that

focuses on the correctness, timing, and diachronic evolution of incremental hypothe-
ses. �e metrics were developed primarily for iSR but it was later shown that they
generalize well to other types of incremental processors when they were put to use in
later chapters.
Chapter 4 presented the so�ware toolkit for incremental spoken dialogue pro-

cessing based on the IU model that was implemented in the context of this thesis.
�e toolkit supports absolute and di�erential hypotheses as a basis for data exchange
between processing modules and also supports other processing schemes that help to
reduce the complexity in the system by allowing active IUs to analyze and extend the
IU network autonomously. In addition, update listeners can be used for communicat-
ing against the main direction of information �ow in the architecture, which spares
the complexity of supporting bi-directional communication across module bu�ers.
Chapter 5 presented (incremental) speech recognition and a workbench for evalu-

ating iSR that implements the metrics developed in Chapter 3. iSR was evaluated on
three di�erent corpora and proved to work reasonably well for all of them. Speci�cally,
meaningful results become available with little delay. Additionally, iSR was further
tested for stability under varying conditions, and n-best processing was shown to
result in improvements already for low values of n. Based on the observation that
iSR is highly non-monotonous, i. e. incurs edits that have to be taken back shortly
a�er, simple optimization techniques were developed and improve stability against
a small cost in timeliness. Finally, a small command-and-control application was
developed which requires incremental speech processing and made use of cost-based
iSR optimization. In the system, iSR optimization has signi�cant advantages over

218

8.2 Conclusion

standard, non-optimized iSR. Furthermore, the system gave proof that interactive
speech-based incremental systems work in practice. While the example domain was
very simple, an advanced version in a more complex domain has recently been shown
to work similarly well (Baumann et al. 2013).
Chapter 6 used incremental processing to move interaction management from

the full turn to more �ne-granular units in dialogue systems. We �rst investigated
silence-delimited sub-turn units that the system used to collaborate with the user
in creating her utterances, and then moved the level of analysis to individual words,
while at the same time crossing the border from reactive to predictive processing. �e
example application for utterance collaboration was rated as more human-like and
more reactive, indicating that full SDSs using sub-turn units may be advantageous.
Stemming from the observation that iSR would o�en produce hypotheses for words
before these were �nished, themicro-timing of individual words was investigated. �e
simple models that were implemented predict the ongoing word’s end and the next
word’s duration with high reliability, almost reaching human performance. While
the example application of speaking in synchrony with a user may not have high
additional value in a full SDS, this technology demonstration exhibits end-to-end
incrementality in real-time, with all processing delays being counterbalanced by
corresponding predictions into the future. More relevant conversational uses of
micro-timing analysis as it happens (rather than post hoc) have been sketched as well.
Chapter 7 introduced incremental speech synthesis (iSS), building on the obser-

vation that the trivially incremental synthesis for synchronous speech in Chapter 6
was auditorily unsatisfactory. �e chapter outlined requirements for iSS and showed
how these are met by the implemented iSS component. Additionally, the toolkit
accommodated these new requirements that it was originally not built for. A series of
experiments then demonstrated that iSS is useful for highly dynamic environments,
that it is feasible as part of an incremental output pipeline, and investigated the trade-
o� between timeliness and prosodic quality. iSS (together with iNLG) enabled system
behaviour that was rated signi�cantly more human-like than that of standard systems.
Even in standard systems, iSS can be useful as it may improve system response time
by folding almost all processing time into delivery.

8.2 Conclusion

�e thesis set out to extend the interaction capabilities of spoken dialogue systems by
proving �ne-granular incremental and proactive processing to be technically feasible
and successful at enabling more naturally interacting SDSs.
Where standard SDSs use a granularity of full turns, the systems presented here

use sub-turn units (Section 6.1) or individual words (Section 6.2) as units for decision

219

8 Conclusion and Outlook

making and the iSR component itself provides even more �ne-grained results (both
in terms of frequency of updates, as well as sub-word information like syllables
and phonemes). �e iSS component allows manipulation at di�erent granularities,
ranging from prosodic change that takes place within 5ms, to di�erent types of
higher-level interactions (with correspondingly longer lags). At the phrase level, the
interdependence of lookahead and prosodic quality was discussed.
�e micro-timing of words can be estimated proactively, that is, the end of a word

can be predicted before that word is over, allowing to balance the delays that are
caused by other system modules, thus resulting in a system that proactively schedules
next words for delivery. �e iSS component is able to hesitate if a next word does
not become available in time, which can also be considered as a sort of proactive
processing, minimizing the impact of delays in other system components.
Behaviours that were only ever enabled by incremental processing (collaborating on

utterances, speaking in a highly dynamic environment, or reacting to external events
while speaking) resulted in systems that were rated asmore natural or human-like than
baseline systems that did not employ incremental processing (or less sophisticated
incremental processing).
Other system behaviours were realized with incremental processing that could not

be compared to non-incremental baseline systems at all (acting early while recognition
is still ongoing, speaking in synchrony, starting to speak before processing is over, or
manipulating prosody during synthesis) making the assessment of their advantage
hard. It is likely that when employed in full systems, these aspects will also contribute
towards naturalness of behaviour.
�us, it is safe to conclude that incremental processing enables more natural inter-

action and will become an important aspect of next-generation SDSs. Incremental
processing helps to overcome the ping-pong style of interaction of most present-day
systems, paving the way to more conversational human-computer interaction.
Finally, this thesis has not attempted to build full incremental SDSs featuring both

incremental spoken input, incremental spoken output, and – foremost – incremental
dialogue management. �e application for synchronous co-completion, which both
receives and produces speech incrementally comes closest (and could potentially
be extended to feature full iSS as developed in Chapter 7) but does not include any
turn-taking abilities (or other contributions more intelligent than plain shadowing).
Incremental turn-taking and dialogue management capabilities were demonstrated
in the application for utterance collaboration. However, while these components were
highly reactive, they did not cross the line to predictive processing. At least for the
�oor tracking component this may be relatively easy to �x, if more input data were
integrated into a more complex model (as in Atterer, Baumann, and Schlangen 2008)
and used in conjunction with micro-timing estimation.

220

8.3 Open Questions

8.3 Open Questions

Given that incremental spoken dialogue processing works incrementally, end-to-end
and in real-time, new questions arise.
One topic that has not been covered in this thesis is incremental dialogue man-

agement, which is, however, necessary to fully leverage the �ndings presented. Work
on iDM is ongoing (Buß and Schlangen 2010, 2011; Selfridge et al. 2012c).�e crucial
question for iDM boils down to making decisions: decisions that become apparent
to the interlocutor cannot easily be revoked, that is, decision making ‘breaks’ the
non-monotonic aspects of the IUmodel. It seems that so far, iDMs have rather avoided
than embraced the uncertainty which arises from incremental decision making. In-
stead, in order to defer making strict decisions and at the same time allow for prompt
reactions, iDMs should generate underspeci�ed decisions (cmp. Guhe and Schilder
2002), and these could be serialized by iNLG to an utterance pre�x that leaves open
as many options as possible for as long as possible (cmp. Dethlefs et al. 2012) in order
to hide the system’s uncertainty in understanding (cmp. Skantze 2008).
�e above-mentioned works rely on one-best input hypotheses, which weakens

their decision making. Lattice/tree-based incremental processing could help to fur-
ther bridge the gap with POMDP-based dialogue management (cmp. Roy, Pineau,
and�run 2000). Tree-based incremental processing would speci�cally contain the
system’s uncertainty and would add an additional dimension to the triangular data
model (turning the triangles into tetrahedrons: an incoming signal is unambiguous
and extends along the time axis, whereas the system’s current hypothesis extends
along all possible dialogue states).
�e work in this thesis has aimed to increase the granularity of processing as

much as possible. However, the ideal level of granularity (at a speci�c level of pro-
cessing) remains open. While iSR now outputs word increments, it remains open
whether this is the right level for an understanding component for which some sort
of phrase-chunking (possibly based on prosodic/timing features) might be su�cient.1
However, such chunking would presuppose some semantic knowledge in the iSR
component, or might focus toomuch on prosody (which is unlikely to unambiguously
de�ne semantic chunks, just like this does not work for turn-taking). However, both
iSR optimization and NLU itself could certainly pro�t from incremental prosodic
information.
Going into the other direction, iSR could also bemademore than word-incremental

and output sub-word units that might already be helpful for NLU analyzes (cmp. the
example of “grün/grüne/grünes” in Section 3.3.2.1).�eNLU (and possibly pragmatic)
analysis could even be fed back to iSR to provide guidance to the recognition process.

1�anks to Gabriel Skantze for raising this idea.

221

8 Conclusion and Outlook

Top-down feedback from higher-level incremental modules towards iSR is an
obvious candidate for future work. However, initial results indicate that this is not
as straightforward and raises the question whether n-best/tree-based incremental
processing is su�cient,2 or whether the incremental recognition process should
provide for partial re-analyses of previous input (given newly added constraints),
resulting in a form of non-monotonous incremental re-processing (instead of ‘just’
non-monotonous output generation).
On the speech synthesis side, a fully incremental prosody model would allow for

more tightly integrated prosodic control over ongoing system utterances, as sketched
in Chapter 7. Furthermore, a structured and integrated incremental prosody model
might also be of use on the input side, where semantic chunking could help to
clarify intonation phrases and vice-versa prosody could hint at information status of
constituents.
Speech input and speech output have been handled independently from each other

(in InproTK and in other systems). A joint speech input and output component,
however, might be bene�cial in order to autonomously handle phenomena like turn-
taking contests (raising the voice as a re�ex to an interruption) or to realize turn-
keeping operations. While such a double-module would show re�exive behaviour (to
be quick, and in order to not bother the higher-level processors with these issues),
a rich interface could still be o�ered so that higher-level reasoning modules and
dialogue management could control such behaviour and be informed of its e�ects.
�e so�ware toolkit InproTK has shown to be �exible enough to support both

incremental input and output processing. However, for the most part, no alternative
implementations ofmodules exist. Work is ongoing to integrate industry-grade speech
recognition (based on Android’s built-in capabilities) which would allow to compare
the di�erent performance aspects (Android uses distributed speech recognition, that is
ASR is performed on a server which likely hurts timeliness to some extent) both based
on a quantitative comparison of the individual components, but also in the context of
small example systems, shading some light on the practical trade-o�s involved with
varying incremental performance. InproTK has been used with multiple languages
(German and English, so far) and no principled di�erences in incremental aspects
have been found. Setting up InproTK for other languages is easy if the underlying
ASR and TTS systems provide for these languages.

InproTK is far from �nished and some obvious candidates for improvement (top-
down interaction, n-best/lattice-based hypotheses, incremental prosody models for
synthesis) will be added to future versions.

2We recently found that iSR errors could o�en not be corrected using iNLU, because all alternatives
had already fallen o� the search beam.

222

8.3 Open Questions

Finally, the rather technology-centric �ndings in this thesis will not by themselves
result in better dialogue interactions. Conversational abilities do not by themselves
result in a high conversational level. How a system may shape the interaction, what
level of conversational abilities are accepted by users, needs to be investigated by
dialogue and interaction designers and tested by usability engineers.
�is thesis merely provides the building blocks that may help to study these issues

and hopes to enable more naturally interacting spoken dialogue systems in the future.

223

Bibliography

Aesop (1991). Aesop’s Fables. Vol. 21. includes a ’life’ of Aesop. Project Gutenberg.
url: ftp://uiarchive.cso.uiuc.edu/pub/etext/gutenberg/etext91/aesop11.zip
(cit. on pp. 157, 171).

Aist, Gregory, James Allen, Ellen Campana, Carlos Gomez Gallo, Scott Stoness, Mary
Swi�, and Michael K. Tanenhaus (2007a). “Incremental Dialogue System Faster
than and Preferred to its Nonincremental Counterpart”. In: Proceedings of the 29th
Annual Conference of the Cognitive Science Society. Nashville, USA, pp. 761–766
(cit. on pp. 16, 146).

– (June 2007b). “Incremental Understanding in Human-Computer Dialogue and Ex-
perimental Evidence for Advantages over Nonincremental Methods”. In: Proceed-
ings of DECALOG, the 11th International Workshop on the Semantics and Pragmatics
of Dialogue. Trento, Italy, pp. 149–154 (cit. on pp. 16, 143, 145, 147).

Amtrup, JanWillers (1999). Incremental speech translation. Berlin,Heidelberg: Springer.
isbn: 3-540-66753-9 (cit. on p. 17).

Anastasakos, Anastasios, Richard Schwartz, and Han Shu (1995). “DurationModeling
in Large Vocabulary Speech Recognition”. In: Proceedings of ICASSP. Detroit, USA,
pp. 628–631 (cit. on p. 155).

Anderson, Hyrum S., Nathan Parrish, and Maya R. Gupta (Sept. 2012). Early Time-
Series Classi�cation with Reliability Guarantee. Tech. rep. SAND2012-6961. Sandia
National Laboratories. url: http://prod.sandia.gov/techlib/accesscontrol.
cgi/2012/126961.pdf (cit. on p. 136).

Anderson, Hyrum S., Nathan Parrish, Kristi Tsukida, and Maya R. Gupta (2012).
“Reliable early classi�cation of time series”. In: IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2012. IEEE. Kyoto, Japan,
pp. 2073–2076. doi: 10.1109/ICASSP.2012.6288318 (cit. on p. 136).

Atterer, Michaela, Timo Baumann, and David Schlangen (2008). “Towards Incre-
mental End-of-Utterance Detection in Dialogue Systems”. In: Proceedings of Coling
2008. Manchester, UK (cit. on pp. 139, 140, 142, 168, 220).

– (2009). “No Sooner Said �an Done? Testing the Incrementality of Semantic Inter-
pretations of Spontaneous Speech”. In: Proceedings of Interspeech 2009. Brighton,
UK (cit. on pp. 49, 66, 121).

Bangalore, Srinivas, VivekKumarRangarajan Sridhar, PrakashKolan, LadanGolipour,
and Aura Jimenez (2012). “Real-time Incremental Speech-to-Speech Translation
of Dialogs”. In: Proceedings of the 2012 Conference of the North American Chapter

224

ftp://uiarchive.cso.uiuc.edu/pub/etext/gutenberg/etext91/aesop11.zip
http://prod.sandia.gov/techlib/access-control.cgi/2012/126961.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2012/126961.pdf
http://dx.doi.org/10.1109/ICASSP.2012.6288318

Bibliography

of the Association for Computational Linguistics: Human Language Technologies.
Montréal, Canada: Association for Computational Linguistics, pp. 437–445. url:
http://www.aclweb.org/anthology/N121048 (cit. on p. 17).

Baumann, Timo (2008). “Simulating Spoken DialogueWith a Focus on Realistic Turn-
Taking”. In: Proceedings of the 13th ESSLLI Student Session. Hamburg, Germany
(cit. on p. 148).

– (2012). “Feedback in Adaptive Interactive Storytelling”. In: Proceedings of the Inter-
disciplinary Workshop on Feedback Behaviors in Dialog. Stevenson, USA (cit. on
p. 216).

Baumann, Timo, Michaela Atterer, and David Schlangen (2009). “Assessing and
Improving the Performance of Speech Recognition for Incremental Systems”. In:
Proceedings of NAACL-HLT 2009. Boulder, USA, pp. 380–388 (cit. on pp. 20, 45,
49, 104, 110).

Baumann, Timo, Okko Buß, and David Schlangen (2010). “InproTK in Action: Open-
Source So�ware for Building German-Speaking Incremental Spoken Dialogue
Systems”. In: Proceedings of ESSV. Berlin, Germany (cit. on p. 20).

– (2011). “Evaluation and Optimisation of Incremental Processors”. In: Dialogue &
Discourse 2.1. Special Issue on Incremental Processing in Dialogue, pp. 113–141.
issn: 2152-9620. doi: 10.5087/dad.2011.106 (cit. on pp. 20, 45, 49).

Baumann, Timo and David Schlangen (2011). “Predicting the Micro-Timing of User
Input for an Incremental Spoken Dialogue System that Completes a User’s Ongoing
Turn”. In: Proceedings of SigDial 2011. Portland, USA (cit. on pp. 21, 135, 148, 156).

– (Sept. 2012a). “Evaluating Prosodic Processing for Incremental Speech Synthesis”.
In: Proceedings of Interspeech. ISCA. Portland, USA (cit. on p. 21).

– (2012b). “Evaluating Prosodic Processing for Incremental Speech Synthesis”. In:
Proceedings of Interspeech (cit. on p. 207).

– (2012c). “Inpro_iSS: A Component for Just-In-Time incremental Speech Synthe-
sis”. In: Procs. of ACL System Demonstrations. Jeju, Korea (cit. on p. 21).

– (Sept. 2012d). “�e INPROTK 2012 Release: A Toolkit for Incremental Spoken Dia-
logue Processing”. In: Sprachkommunikation 2012: Beiträge zur 10. ITG-Fachtagung.
(Braunschweig, Germany). Ed. by Tim Fingscheidt. Informationstechnische Gesell-
scha� im VDE (ITG). isbn: 978-3-8007-3455-9 (cit. on p. 20).

– (2012e). “�e InproTK 2012 Release”. In: Proceedings of SDCTD. Montréal, Canada
(cit. on p. 20).

Baumann, Timo, Okko Buß, Michaela Atterer, and David Schlangen (2009). “Evalu-
ating the Potential Utility of ASR N-Best Lists for Incremental Spoken Dialogue
Systems”. In: Proceedings of Interspeech 2009. Brighton, UK, pp. 1031–1034 (cit. on
pp. 20, 49, 110, 117–119).

Baumann, Timo, Maike Paetzel, Philipp Schlesinger, and Wolfgang Menzel (2013).
“Using A�ordances to Shape the Interaction in a Hybrid Spoken Dialogue System”.

225

http://www.aclweb.org/anthology/N12-1048
http://dx.doi.org/10.5087/dad.2011.106

Bibliography

In: Proceedings of ESSV 2013. Ed. by Petra Wagner. TUDpress, pp. 12–19 (cit. on
pp. 84, 129, 133, 135, 219).

Bertalan�y, Ludwig von (Dec. 1972). “�e History and Status of General Systems
�eory”. In:�eAcademy ofManagement Journal 15.4, pp. 407–426. issn: 0001-4273
(cit. on p. 28).

Bisani, Maximilian and Hermann Ney (2008). “Joint-sequence models for grapheme-
to-phoneme conversion”. In: Speech Communication 50.5, pp. 434 –451. issn: 0167-
6393. doi: 10.1016/j.specom.2008.01.002 (cit. on p. 93).

Black, Alan W. and Maxine Eskenazi (2009). “�e spoken dialogue challenge”. In:
Proceedings of the SIGDIAL 2009 Conference: �e 10th Annual Meeting of the Special
Interest Group on Discourse and Dialogue. SIGDIAL ’09. London, UK: Association
for Computational Linguistics, pp. 337–340. isbn: 978-1-932432-64-0. url: http:
//dl.acm.org/citation.cfm?id=1708376.1708426 (cit. on p. 41).

Black, AlanW. and Keiichi Tokuda (2005). “�e Blizzard Challenge – 2005: Evaluating
corpus-based speech synthesis on common datasets”. In: Proceedings of Interspeech
(cit. on p. 183).

Black, Alan W., Susanne Burger, Alistair Conkie, Helen Hastie, Simon Keizer, Oliver
Lemon, Nicolas Merigaud, Gabriel Parent, Gabriel Schubiner, Blaise �omson,
Jason D. Williams, Kai Yu, Steve Young, and Maxine Eskenazi (2011). “Spoken
Dialog Challenge 2010: comparison of live and control test results”. In: Proceedings
of the SIGDIAL 2011 Conference. SIGDIAL ’11. Portland, USA: Association for
Computational Linguistics, pp. 2–7. isbn: 978-1-937284-10-7. url: http://dl.acm.
org/citation.cfm?id=2132890.2132892 (cit. on p. 41).

Boersma, P. (2002). “Praat, a system for doing phonetics by computer”. In: Glot
international 5.9/10, pp. 341–345. issn: 1381-3439 (cit. on p. 107).

Bohus, Dan and Alexander I. Rudnicky (July 2009). “�e Ravenclaw Dialog Man-
agement Framework: Architecture and Systems”. In: Computer Speech & Language
3.23, 332–361. issn: 0885-2308. doi: 10.1016/j.csl.2008.10.001 (cit. on p. 41).

Boros, Manuela, Wieland Eckert, Florian Gallwitz, Günther Görz, Gerhard Han-
rieder, and Heinrich Niemann (Oct. 1996). “Towards Understanding Spontaneous
Speech: Word Accuracy Vs. Concept Accuracy”. In: Proceedings of the 4th ICSLP.
Philadelphia, USA, pp. 1009–1012 (cit. on pp. 66, 102).

Bray, Tim, Jean Paoli, Eve Maler, François Yergeau, and C. M. Sperberg-McQueen
(Nov. 2008). Extensible Markup Language (XML) 1.0 (Fi�h Edition). W3C Recom-
mendation. W3C. url: http://www.w3.org/TR/2008/RECxml20081126/ (cit. on
p. 184).

Breiman, Leo, JeromeH. Friedman, Richard A. Olshen, and Charles J. Stone (1984).
Classi�cation and regression trees.Wadsworth,Monterey,USA. isbn: 978-0412048418
(cit. on p. 156).

226

http://dx.doi.org/10.1016/j.specom.2008.01.002
http://dl.acm.org/citation.cfm?id=1708376.1708426
http://dl.acm.org/citation.cfm?id=1708376.1708426
http://dl.acm.org/citation.cfm?id=2132890.2132892
http://dl.acm.org/citation.cfm?id=2132890.2132892
http://dx.doi.org/10.1016/j.csl.2008.10.001
http://www.w3.org/TR/2008/REC-xml-20081126/

Bibliography

Brennan, SusanE. (1996). “Lexical entrainment in spontaneous dialog”. In:Proceedings
of the International Symposium on Spoken Dialogue. Philadelphia, USA, pp. 41–44
(cit. on p. 80).

Brennan, Susan E. and Herbert H. Clark (Nov. 1996). “Conceptual Pacts and Lexical
Choice in Conversation”. In: Journal of Experimental Psychology: Learning, Memory,
and Cognition 22.6, pp. 1482–1493. issn: 1939-1285. doi: 10.1037/02787393.22.6.
1482 (cit. on p. 37).

Brinckmann, Caren and Jürgen Trouvain (2003). “�e Role of Duration Models and
Symbolic Representation for Timing in Synthetic Speech”. In: International Journal
of Speech Technology 6.1, pp. 21–31. doi: 10.1023/A:1021043804581 (cit. on p. 156).

Brown, Peter F., James C. Spohrer, PeterH. Hochschild, and James K. Baker (1982).
“Partial traceback and dynamic programming”. In: Acoustics, Speech, and Signal
Processing, IEEE International Conference on ICASSP’82. Vol. 7. Paris, France,
pp. 1629 –1632. doi: 10.1109/ICASSP.1982.1171441 (cit. on pp. 104, 136).

Burnett, Daniel C., Andrew Hunt, and Mark R. Walker (Sept. 2004). Speech Synthesis
Markup Language (SSML) Version 1.0. W3C Recommendation. W3C. url: http:
//www.w3.org/TR/2004/RECspeechsynthesis20040907/ (cit. on p. 178).

Buschmeier, Hendrik and Stefan Kopp (2012). “Adapting Language Production to
Listener Feedback Behaviour”. In: Proceedings of the Interdisciplinary Workshop on
Feedback Behaviors in Dialog, pp. 14–17 (cit. on p. 200).

Buschmeier,Hendrik, Timo Baumann, Benjamin Dorsch, Stefan Kopp, and David
Schlangen (2012). “Combining Incremental Language Generation and Incremental
Speech Synthesis for Adaptive Information Presentation”. In: Proceedings of SigDial.
Seoul, Korea, pp. 295–303 (cit. on pp. 21, 199, 201, 202, 206, 208).

Buß, Okko, Timo Baumann, and David Schlangen (2010). “Collaborating on Utter-
ances with a SpokenDialogue SystemUsing an ISU-based Approach to Incremental
DialogueManagement”. In: Proceedings of SigDial 2010. Tokyo, Japan (cit. on pp. 20,
135, 140, 142, 143, 145, 148).

Buß, Okko and David Schlangen (2010). “Modelling Sub-Utterance Phenomena in
Spoken Dialogue Systems”. In: Proceedings of SemDial (PozDial). Poznan, Poland
(cit. on pp. 145, 221).

– (2011). “DIUM – An Incremental DialogueManager�at Can Produce Self-Correc-
tions”. In: Proceedings of SemDial 2011 (Los Angelogue). Los Angeles, USA (cit. on
pp. 17, 79, 221).

Byrne, Steve, Lauren Wood, Vidur Apparao, Chris Wilson, Robert Sutor, Scott Isaacs,
Gavin Nicol, Jonathan Robie, Arnaud Le Hors, Mike Champion, and Ian Jacobs
(Oct. 1998). Document Object Model (DOM) Level 1. W3C Recommendation. W3C.
url: http://www.w3.org/TR/1998/RECDOMLevel119981001 (cit. on p. 184).

227

http://dx.doi.org/10.1037/0278-7393.22.6.1482
http://dx.doi.org/10.1037/0278-7393.22.6.1482
http://dx.doi.org/10.1023/A:1021043804581
http://dx.doi.org/10.1109/ICASSP.1982.1171441
http://www.w3.org/TR/2004/REC-speech-synthesis-20040907/
http://www.w3.org/TR/2004/REC-speech-synthesis-20040907/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001

Bibliography

Carroll, John, Ted Briscoe, and Antonio San�lippo (1998). “Parser evaluation: a survey
and a new proposal”. In: Proceedings of the 1st International Conference on Language
Resources and Evaluation, pp. 447–454 (cit. on p. 66).

Chen, David L. and Raymond J. Mooney (July 2008). “Learning to Sportscast: A
Test of Grounded Language Acquisition”. In: Proceedings of 25th International
Conference on Machine Learning (ICML-2008). Helsinki, Finland (cit. on pp. 193,
194).

Cheveigné, Alain de and Hideki Kawahara (2002). “YIN, a fundamental frequency
estimator for speech and music”. In: Journal of the Acoustical Society of America
111.4, pp. 1917–1930. issn: 0001-4966. doi: 10.1121/1.1458024 (cit. on p. 85).

Chotimongkol, Ananlada and Alexander I. Rudnicky (2001). “N-best speech hypoth-
esis reordering using linear regression”. In: Proceedings of Eurospeech. Aalborg,
Denmark, pp. 1829–1832 (cit. on pp. 102, 117).

Chunwijitra, V., T. Nose, and T. Kobayashi (2012). “A speech parameter generation
algorithm using local variance forHMM-based speech synthesis”. In: Proceedings
13th Annual Conference of the International Speech Communication Association.
�e International Speech Communication Association (cit. on p. 216).

Clark, Herbert H. (1996). Using Language. Cambridge University Press. isbn: 978-
0521567459 (cit. on pp. 31, 45, 138, 143, 151, 198).

– (2002). “Speaking in Time”. In: Speech Communication 36.1, pp. 5–13. issn: 0167-
6393. doi: 10.1016/S01676393(01)00022X (cit. on p. 168).

Clark, Robert A.J. and Kurt E. Dusterho� (1999). “Objective methods for evaluating
synthetic intonation”. In: Proceedings of Interspeech (cit. on p. 183).

Cohen, William (1995). “Fast e�ective rule induction”. In: Proceedings of the 12th
International Conference on Machine Learning. Morgan Kaufmann, pp. 115–123
(cit. on p. 127).

Cummins, Fred (2002). “On synchronous speech”. In:Acoustic Research Letters Online
3.1, pp. 7–11. issn: 1529-7853 (cit. on pp. 152, 162).

– (Apr. 2003). “Practice and performance in speech produced synchronously”. In:
Journal of Phonetics 31.2, pp. 139–148. issn: 0095-4470. doi: 10 . 1016 / S0095
4470(02)000827 (cit. on p. 152).

– (Jan. 2009). “Rhythm as entrainment:�e case of synchronous speech”. In: Journal
of Phonetics 37.1, pp. 16–28. issn: 0095-4470. doi: 10.1016/j.wocn.2008.08.003
(cit. on pp. 151, 152).

DeVault, David, Kenji Sagae, and David Traum (Sept. 2009). “Can I Finish? Learning
When to Respond to Incremental Interpretation Results in Interactive Dialogue”.
In: Proceedings of the SIGDIAL 2009 Conference. London, UK, pp. 11–20 (cit. on
pp. 17, 42, 79, 149, 152, 153).

DeVault, David and David Traum (2012a). “A Demonstration of Incremental Speech
Understanding and Con�dence Estimation in a VirtualHuman Dialogue System.

228

http://dx.doi.org/10.1121/1.1458024
http://dx.doi.org/10.1016/S0167-6393(01)00022-X
http://dx.doi.org/10.1016/S0095-4470(02)00082-7
http://dx.doi.org/10.1016/S0095-4470(02)00082-7
http://dx.doi.org/10.1016/j.wocn.2008.08.003

Bibliography

System Demonstration”. In: �e 13th annual SIGdial Meeting on Discourse and
Dialogue (SigDial 2012) (cit. on p. 42).

– (2012b). “Incremental Speech Understanding in a Multi-Party Virtual Human
Dialogue System. System Demonstration”. In: �e 2012 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT 2012), pp. 25–28 (cit. on p. 42).

Dean, �omas and Mark Boddy (1988). “An Analysis of Time-Dependent Planning”.
In: Proceedings of AAAI-88. AAAI. Cambridge, USA, pp. 49–54 (cit. on p. 49).

Dellwo, Volker and Daniel Friedrichs (2012). “Variability of speech rhythm in syn-
chronous speech”. In: Proceedings of Speech Prosody. url: http://sprosig.isle.
illinois.edu/sp2012/uploadfiles/file/sp2012_submission_209.pdf (cit. on
pp. 165, 169).

Descartes, René (1824).Discours de la méthode pour bien conduire sa raison, et chercher
la verité dans les sciences. Ed. by Victor Cousin. Paris: Tome Premier. url: http:
//fr.wikisource.org/wiki/Discours_de_la_mÃl’thode_(Ãl’d._Cousin) (cit. on
p. 25).

Dethlefs, Nina, Helen Hastie, Verena Rieser, and Oliver Lemon (May 2012). “Opti-
mising Incremental Generation for Spoken Dialogue Systems: Reducing the Need
for Fillers”. In: INLG 2012 Proceedings of the Seventh International Natural Lan-
guage Generation Conference. Utica, IL: Association for Computational Linguistics,
pp. 49–58. url: http://www.aclweb.org/anthology/W121509 (cit. on p. 221).

Duncan Jr, Starkey and George Niederehe (1974). “On signalling that it’s your turn
to speak”. In: Journal of Experimental Social Psychology 10.3, pp. 234 –247. issn:
0022-1031. doi: 10.1016/00221031(74)900705 (cit. on pp. 31, 32).

Dutoit, �ierry, Maria Astrinaki, Onur Babacan, Nicolas d’Alessandro, and Benjamin
Picart (Mar. 2011). pHTS for Max/MSP: A Streaming Architecture for Statistical
Parametric Speech Synthesis. Tech. rep. 1, pp. 7–11. url: http://www.numediart.
org/docs/numediart_2011_s13_p2_report.pdf (cit. on pp. 186–188, 216).

Edlund, Jens (2008). “Incremental Speech Synthesis”. In: Second Swedish Language
Technology Conference. System Demonstration (cit. on pp. 175–177, 182, 203).

Edlund, Jens and MattiasHeldner (2007). “Underpinning /nailon/: Automatic Esti-
mation of Pitch Range and Speaker Relative Pitch”. In: Lecture Notes in Computer
Science 4441, p. 229. doi: 10.1007/9783540741220_18 (cit. on p. 168).

Edlund, Jens, Joakim Gustafson, Mattias Heldner, and Anna Hjalmarsson (2008).
“Towards human-like spoken dialogue systems”. In: Speech Communication 50,
pp. 630–645. issn: 0167-6393. doi: 10.1016/j.specom.2008.04.002 (cit. on pp. 128,
144).

Farrell, Anthony Timothy (Apr. 13, 2004). “Call centre agent automated assistance”.
Pat. US 6,721,416 B1. International Business Machines Corporation. url: http:
//patft1.uspto.gov/netacgi/nphParser?patentnumber=6721416 (cit. on p. 17).

229

http://sprosig.isle.illinois.edu/sp2012/uploadfiles/file/sp2012_submission_209.pdf
http://sprosig.isle.illinois.edu/sp2012/uploadfiles/file/sp2012_submission_209.pdf
http://fr.wikisource.org/wiki/Discours_de_la_méthode_(éd._Cousin)
http://fr.wikisource.org/wiki/Discours_de_la_méthode_(éd._Cousin)
http://www.aclweb.org/anthology/W12-1509
http://dx.doi.org/10.1016/0022-1031(74)90070-5
http://www.numediart.org/docs/numediart_2011_s13_p2_report.pdf
http://www.numediart.org/docs/numediart_2011_s13_p2_report.pdf
http://dx.doi.org/10.1007/978-3-540-74122-0_18
http://dx.doi.org/10.1016/j.specom.2008.04.002
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=6721416
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=6721416

Bibliography

Fernández, Raquel and Jonathan Ginzburg (2002). “Non-sentential utterances: A
corpus-based study”. In: Traitement automatique des langues 43.2, pp. 13–42 (cit. on
p. 151).

Fernández, Raquel, Tatjana Lucht, Kepa Rodriguez, and David Schlangen (Dec. 2006).
“Interaction in Task-OrientedHuman–Human Dialogue: �e E�ects of Di�erent
Turn-Taking Policies”. In: Proceedings of the First International IEEE/ACLWorkshop
on Spoken Language Technology. Palm Beach, USA (cit. on pp. 110, 143).

Ferrer, Luciana, Elizabeth Shriberg, and Andreas Stolcke (Sept. 2002). “Is the Speaker
Done Yet? Faster and More Accurate End-Of-Utterance Detection Using Prosody”.
In: Proceedings of the International Conference on Spoken Language Processing
(ICSLP2002). Denver, USA (cit. on pp. 139, 140).

Finkler, Wolfgang (1997). Automatische Selbstkorrektur bei der inkrementellen Gener-
ierung gesprochener Sprache unter Realzeitbedingungen. Dissertationen zur Kün-
stlichen Intelligenz. in�x Verlag (cit. on p. 53).

Gales, Mark and Steve Young (2007). “�e Application of Hidden Markov Models in
Speech Recognition”. In: Foundations and Trends in Signal Processing 1.3, pp. 195–
304. doi: 10.1561/2000000004 (cit. on p. 89).

Gallo, Carlos Gómez, Gregory Aist, James Allen, William de Beaumont, Sergio Coria,
Whitney Gegg-Harrison, Joana P. Pardal, and Mary Swi� (June 2007). “Annotating
Continuous Understanding in a Multimodal Dialogue Corpus”. In: Proceedings of
DECALOG, the 11th International Workshop on the Semantics and Pragmatics of
Dialogue. Trento, Italy, pp. 75–82 (cit. on p. 62).

Ginzburg, Jonathan (1996). “Interrogatives: Questions, Facts and Dialogue”. In:�e
Handbook of Contemporary Semantic �eory. Ed. by Shalom Lappin. Oxford: Black-
well (cit. on p. 145).

Gravano, A. and J. Hirschberg (2009). “Backchannel-inviting cues in task-oriented
dialogue”. In: Proceedings of Interspeech. Vol. 2009, pp. 1019–1022 (cit. on pp. 142,
150).

Gravano, Agustín and Julia Hirschberg (2011). “Turn-taking cues in task-oriented
dialogue”. In: Computer Speech & Language 25.3, pp. 601–634. issn: 0885-2308.
doi: 10.1016/j.csl.2010.10.003 (cit. on pp. 29, 32, 142).

Greenberg, Steven (1996). “Auditory Processing of Speech”. In: Principles of Exper-
imental Phonetics. Ed. by Norman J. Lass. Mosby. Chap. 10, pp. 362–407 (cit. on
p. 24).

Grewendorf, Günther, Fritz Hamm, and Wolfgang Sternefeld (1989). Sprachliches
Wissen. Eine Einführung in moderne �eorien der Grammatischen Beschreibung.
3rd ed. Suhrkamp (cit. on p. 26).

Guhe, Markus (2007). Incremental Conceptualization for Language Production. Mah-
wah, USA: Lawrence Erlbaum Associates (cit. on pp. 36, 47, 50, 51).

230

http://dx.doi.org/10.1561/2000000004
http://dx.doi.org/10.1016/j.csl.2010.10.003

Bibliography

Guhe, Markus and Frank Schilder (2002). “Underspeci�cation for incremental gen-
eration”. In: Proceedings of KONVENS 2002 (cit. on p. 221).

Hamadeh, Rabih (2012). “Untersuchung des Einsatzes von maschinelles Lernen-
basierten Filtermethoden in der inkrementellen Spracherkennung”. Master’s thesis.
FB Infomatik, Universität Hamburg (cit. on pp. 127, 130).

He, Yulan and Steve Young (2005). “Semantic Processing using the Hidden Vector
State Model”. In: Computer Speech and Language 19.1, pp. 85–106 (cit. on p. 62).

Heintze, Silvan, Timo Baumann, and David Schlangen (Sept. 2010). “Comparing
Local and Sequential Models for Statistical Incremental Natural Language Under-
standing”. In: Proceedings of SigDial 2010. Tokyo, Japan (cit. on pp. 64, 152).

Heise Zeitschri�en Verlag, ed. (July 2012). c’t: Magazin für Computer Technik 30.16.
Hildebrandt, Bernd, Hans-Jürgen Eikmeyer, Gert Rickheit, and Petra Weiß (1999).
“Inkrementelle Sprachrezeption [Incremental language understanding]”. In: Kog-
Wis: Proceedings der 4. Fachtagung der Gesellscha� für Kognitionswissenscha�. Ed.
by I. Wachsmuth and B. Jung, 19–24 (cit. on pp. 47, 52).

Hill, David R., LeonardManzara, and Craig-Richard Taube-Schock (1995). “Real-time
articulatory speech-synthesis-by-rules”. In: Proceedings of AVIOS. Vol. 95. Citeseer
(cit. on p. 183).

Hirasawa, Jun-ichi, Mikio Nakano, Takeshi Kawabata, and Kiyoaki Aikawa (Sept.
1999). “E�ects of System Barge-in Responses on User Impressions”. In: Proceed-
ings of the 6th European Conference on Speech Communication and Technology
(EUROSPEECH 1999). Budapest, Hungary (cit. on pp. 152, 154).

Huang, X., F. Alleva, H.W. Hon, M.Y. Hwang, K.F. Lee, and R. Rosenfeld (Jan. 1992).
�e SPHINX-II speech recognition system: an overview. Tech. rep. CMU-CS-92-112.
Carnegie Mellon University (cit. on p. 103).

Hunt, Melvin J. (1990). “Figures of merit for assessing connected-word recognisers”.
In: Speech Communication 9.4, pp. 329–336 (cit. on p. 48).

IPA, International Phonetic Association, (July 1999).Handbook of the International
Phonetic Association: A guide to the use of the International Phonetic Alphabet.
Cambridge, UK: Cambridge University Press. isbn: 9780521637510 (cit. on p. 157).

IPDS, Institut für Phonetik und digitale Sprachverarbeitung, (1994).�e Kiel Corpus
of Read Speech. Ed. by University of Kiel. CD-ROM. Kiel, Germany (cit. on pp. 110,
157).

ITU (July 2006).Mean Opinion Score (MOS) terminology (ITU-T Recommendation
P.800.1). International Telecommunications Union. url: http://www.itu.int/rec/
TRECP.800199608I/en (cit. on p. 183).

Imai, T., A. Kobayashi, S. Sato, H. Tanaka, and A. Ando (2000). “Progressive 2-pass
decoder for real-time broadcast news captioning”. In: Proceedings of ICASSP 2000.
Vol. 3. Istanbul, Turkey. doi: 10.1109/ICASSP.2000.861969 (cit. on pp. 103, 104,
125).

231

http://www.itu.int/rec/T-REC-P.800-199608-I/en
http://www.itu.int/rec/T-REC-P.800-199608-I/en
http://dx.doi.org/10.1109/ICASSP.2000.861969

Bibliography

Imai, Toru, Hideki Tanaka, Akio Ando, and Haruo Isono (2003). “Progressive early
decision of speech recognition results by comparing most likely word sequences”.
In: Systems and Computers in Japan 34.14, pp. 73–82. issn: 1520-684X. doi: 10.
1002/scj.10193 (cit. on p. 104).

Janert, Philipp K. (2009). Gnuplot in Action: Understanding Data with Graphs. Green-
wich, USA: Manning Publications Co. isbn: 978-1933988399 (cit. on p. 109).

Jekat, S. J., C. Scheer, and T. Schultz (1997). VMII Szenario I: Instruktionen für alle
Sprachstellungen. Tech. rep. VM-Techdoc 62. Universität Hamburg, LMUMünchen,
Universität Karlsruhe (cit. on p. 110).

Johnson,Michael T. (2005). “Capacity and Complexity of HMMDurational Modeling
Techniques”. In: IEEE Signal Processing Letters 12.5, pp. 407–410 (cit. on p. 155).

Jokinen, Kristiina (2009). Constructive dialogue modelling: speech interaction and
rational agents. Vol. 11. Wiley Series in Agent Technology. Chichester, UK: Wiley-
Interscience (cit. on p. 23).

Jokinen, Kristiina and Michael McTear (2010). Spoken Dialogue Systems. Ed. by
Graeme Hirst. Synthesis Lectures on Human Language Technologies. Morgan
& Claypool (cit. on pp. 23, 36).

Jonsdottir, Gudny Ragna, Kristinn R.�órisson, and Eric Nivel (2008). “Learning
Smooth, Human-Like Turntaking in Realtime Dialogue”. In: Intelligent Virtual
Agents. Ed. by Helmut Prendinger, James Lester, and Mitsuru Ishizuka. Vol. 5208.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 162–175. isbn:
978-3-540-85482-1. doi: 10.1007/9783540854838_17 (cit. on p. 42).

Joustra, Yme (2011). “Evaluation of Turn Taking Behaviour in Semaine”. In: Pro-
ceedings of TSConIT 2011. (June 20, 2011). Vol. 15. University of Twente (cit. on
p. 42).

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. 2nd ed. Pearson International (cit. on pp. 22, 23, 89, 91, 92, 100, 178,
185).

Kato, Yoshihide, ShigekiMatsubara, and Yasuyoshi Inagaki (July 2004). “Stochastically
evaluating the validity of partial parse trees in incremental parsing”. In: Proceedings
of the ACL Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together. Barcelona, Spain, pp. 9–15 (cit. on p. 48).

Kawahara, H. (1997). “Speech representation and transformation using adaptive
interpolation of weighted spectrum: vocoder revisited”. In: Acoustics, Speech, and
Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on. Vol. 2.
IEEE, pp. 1303–1306 (cit. on p. 182).

Kenny, P., R. Hollan, V. Gupta, M. Lennig, P. Mermelstein, and D. O’Shaughnessy
(Apr. 1991). “A*-admissible heuristics for rapid lexical access”. In: Acoustics, Speech,

232

http://dx.doi.org/10.1002/scj.10193
http://dx.doi.org/10.1002/scj.10193
http://dx.doi.org/10.1007/978-3-540-85483-8_17

Bibliography

and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, 689 –692
vol. 1. doi: 10.1109/ICASSP.1991.150433 (cit. on p. 106).

Kilger, Anne and Wolfgang Finkler (1995). Incremental Generation for Real-time
Applications. Tech. rep. RR-95-11. Saarbrücken, Germany: DFKI (cit. on p. 47).

Klatt, Dennis H. (1979). “Synthesis by rule of segmental durations in English sen-
tences”. In: Frontiers of Speech Communication Research, pp. 287–299 (cit. on p. 156).

Lamere, Paul, Philip Kwok, WilliamWalker, Evandro Gouvea, Rita Singh, and Peter
Wolf (Sept. 2003). “Design of the CMU Sphinx-4 decoder”. In: Proceedings of
EUROSPEECH. ISCA. Geneva, Switzerland, pp. 1181–1184 (cit. on p. 103).

Larsen-Freeman, Diane and Lynne Cameron (2008). “Complex Systems and Applied
Linguistics”. In: SUB: A 2009 / 7836 (cit. on p. 29).

Lazaridis, Alexandros, Todor Ganchev,�eodoros Kostoulas, Iosif Mporas, and Nikos
Fakotakis (Sept. 2010). “Phone duration modeling: Overview of techniques and
performance optimization via feature selection in the context of emotional speech”.
In: International Journal of Speech Technology 13.3, pp. 175–188. doi: 10.1007/
s107720109077x (cit. on p. 156).

Lee, Cheongjae, Sangkeun Jung, and Gary Geunbae Lee (2008). “Robust Dialog
Management with N-best Hypotheses Using Dialog Examples and Agenda”. In:
Proc. of ACL-HLT. Columbus, USA (cit. on pp. 102, 117).

Lee, K.F., H.W. Hon, and R. Reddy (1990). “An overview of the SPHINX speech
recognition system”. In: Acoustics, Speech and Signal Processing, IEEE Transactions
on 38.1, pp. 35–45 (cit. on p. 103).

Lerner, Gene H. (Jan. 2002). “Turn Sharing:�e Choral Co-Production Of Talk In
Interaction”. In:�e Language of Turn and Sequence. Ed. by Cecilia E. Ford, Barbara
A. Fox, and Sandra A.�ompson. Oxford, UK: Oxford University Press. Chap. 9,
pp. 225–256 (cit. on pp. 149, 150).

– (2004). “Collaborative turn sequences”. In: Conversation Analysis: Studies from the
First Generation. Ed. by Gene H. Lerner. Pragmatics & Beyond. Amsterdam,�e
Netherlands: John Benjamins, pp. 225–256 (cit. on p. 150).

Levelt, William J.M. (1989). Speaking: From Intention to Articulation. Mit Pr (cit. on
pp. 15, 27, 47, 175, 185, 208).

Levenshtein, Vladimir I. (Feb. 1966). “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet Physics – Doklady 10.8, pp. 707–710 (cit. on
p. 68).

Lewis, James R. (2011). Practical Speech User Interface Design. CRC Press. isbn: 978-1-
4398-1584-7 (cit. on p. 40).

Local, John (Aug. 2007). “Phonetic detail and the organisation of talk-in-interaction”.
In: Proceedings of the 16th ICPhS. Saarbrücken, Germany (cit. on pp. 149–151).

Lohmann, K., C. Eschenbach, and C.Habel (2011). “Linking spatial haptic perception
to linguistic representations: assisting utterances for tactile-map explorations”. In:

233

http://dx.doi.org/10.1109/ICASSP.1991.150433
http://dx.doi.org/10.1007/s10772-010-9077-x
http://dx.doi.org/10.1007/s10772-010-9077-x

Bibliography

Spatial information theory. Ed. by M. Egenhofer, N. Giudice, R. Moratz, and M.
Worboys. Berlin, Heidelberg: Springer, pp. 328–349 (cit. on p. 193).

Lohmann, Kris, Matthias Kerzel, and Christopher Habel (2012). “Verbally Assisted
Virtual-Environment Tactile Maps: A Prototype System”. In: Proceedings of the
Workshop on Spatial Knowledge Acquisition with Limited Information Displays 2012.
(Aug. 31, 2012). Ed. by Christian Graf, Nicholas A. Giudice, and Falko Schmid.
Seeon, Germany, pp. 25–30 (cit. on p. 194).

Lucas, Bruce (Sept. 2000). “VoiceXML for Web-based distributed conversational
applications”. In: Commun. ACM 43.9, pp. 53–57. issn: 0001-0782. doi: 10.1145/
348941.348985 (cit. on p. 40).

Maat, Mark ter (2011). “Response Selection and Turn-taking for a Sensitive Arti�cial
Listening Agent”. PhD thesis. University of Twente (cit. on p. 42).

Malsburg, Titus von der, Timo Baumann, and David Schlangen (2009). “TELIDA:
A Package for Manipulation and Visualisation of Timed Linguistic Data”. In:
Proceedings of SigDial 2009. London, UK (cit. on pp. 20, 109).

Martin, D., A. Cheyer, and D. Moran (1999). “�e Open Agent Architecture: a frame-
work for building distributed so�ware systems”. In: Applied Arti�cial Intelligence
13.1/2, pp. 91–128. url: citeseer.ist.psu.edu/martin99open.html (cit. on p. 83).

Matsuyama, Kyoko, Kazunori Komatani, Ryu Takeda, Toru Takahashi, Tetsuya Ogata,
andHiroshi G. Okuno (2010). “Analyzing User Utterances in Barge-in-able Spo-
ken Dialogue System for Improving Identi�cation Accuracy”. In: Proceedings of
Interspeech (cit. on pp. 175, 203).

McGraw, Ian (Sept. 13, 2012). Personal Communication. Portland, USA (cit. on p. 43).
McGraw, Ian and Alexander Gruenstein (Sept. 2012). “Estimating Word-Stability
During Incremental Speech Recognition”. In: Proceedings of Interspeech. ISCA.
Portland, USA (cit. on pp. 43, 104, 127, 135).

McTear, Michael (2002). Spoken Dialogue Technology. Toward the Conversational
User-Interface. Springer Verlag (cit. on pp. 22, 23, 36, 175).

Mermelstein, Paul (1976). “DistanceMeasures for Speech Recognition – Psychological
and Instrumental”. In: Pattern Recognition and Arti�cial Intelligence, Proceedings of
the Joint Workshop. Ed. by C. H. Chen, pp. 374–388 (cit. on pp. 94, 95).

Miller, Geore (Nov. 1963). “Speaking in General. Review of J. H. Greenberg (Ed.),
Universals of language”. In: Contemporary Psychology 8.11, pp. 417–418. issn: 1554-
0138. doi: 10.1037/007084 (cit. on p. 31).

Miyazaki, Noboru, Mikio Nakano, and Kiyoaki Aikawa (2002). “Robust speech un-
derstanding using incremental understanding with n-best recognition hypotheses”.
In: Joho Shori Gakkai Kenkyu Hokoku 10 (cit. on p. 117).

Nakano, Mikio, Noboru Miyazaki, Jun-ichiHirasawa, Kohji Dohsaka, and Takeshi
Kawabata (1999). “Understanding Unsegmented User Utterances in Real-Time
Spoken Dialogue Systems”. In: Proc. of ACL. College Park, USA (cit. on p. 117).

234

http://dx.doi.org/10.1145/348941.348985
http://dx.doi.org/10.1145/348941.348985
citeseer.ist.psu.edu/martin99open.html
http://dx.doi.org/10.1037/007084

Bibliography

Nooteboom, Sieb G. (1997). “�e prosody of speech: Melody and rhythm”. In:�e
Handbook of Phonetic Sciences. Ed. by W. J. Hardcastle and J. Laver. 1st ed. Oxford:
Blackwell, pp. 640–673 (cit. on p. 213).

Odell, Julian J., Valtcho Valtchev, Phil C. Woodland, and Steve J. Young (1994). “A
One Pass Decoder Design For Large Vocabulary Recognition”. In: Proceedings of
the ARPA Workshop on Human Language Technology. Plainsboro, USA (cit. on
p. 100).

Oppenheim, A. V. and R. W. Schafer (Sept. 2004). “DSP history - From frequency to
quefrency: a history of the cepstrum”. In: IEEE Signal Processing Magazine 21.5,
pp. 95–106. issn: 1053-5888. doi: 10.1109/MSP.2004.1328092 (cit. on p. 95).

Ortmanns, Stefan andHermann Ney (2000). “Look-ahead techniques for fast beam
search”. In: Computer Speech & Language 14, pp. 15–32 (cit. on p. 122).

Oshry,Matt, Paolo Baggia, Kenneth Rehor,Milan Young, Rahul Akolkar,XuYang, Jim
Barnett, Rafah Hosn, RJ Auburn, Jerry Carter, Scott McGlashan, Michael Bodell,
and Daniel C. Burnett (Dec. 2009). Voice Extensible Markup Language (VoiceXML)
3.0. W3CWorkingDra�. http://www.w3.org/TR/2009/WD-voicexml30-20091203/.
W3C (cit. on p. 175).

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (July 2002). “BLEU:
A Method for Automatic Evaluation of Machine Translation”. In: Proceedings of
ACL. Philadelphia, USA, pp. 311–318 (cit. on p. 66).

Parnas, David Lorge (1979). “Designing So�ware for Ease of Extension and Con-
traction”. In: So�ware Engineering, IEEE Transactions on SE-5.2, pp. 128–138. issn:
0098-5589. doi: 10.1109/TSE.1979.234169 (cit. on p. 33).

Pfau, T. and G. Ruske (Aug. 1996). “Estimating the Speaking Rate by Vowel Detec-
tion”. In: Proceedings of the 14th International Conference of Phonetic Science. San
Francisco, USA (cit. on p. 155).

P�tzinger,Hartmut R. (Dec. 1998). “Local Speech Rate as a Combination of Syllable
and Phone Rate”. In: Proceedings of the 5th International Conference on Speech and
Language Processing. Vol. 3. Sydney, Australia, pp. 1087–1090 (cit. on pp. 156, 157).

Pieraccini, Roberto and David Lubensky (2005). “Spoken Language Communication
with Machines: �e Long and Winding Road from Research to Business”. In:
IEA/AIE. Ed. by Moonis Ali and Floriana Esposito. Vol. 3533. Lecture Notes in
Computer Science. Springer, pp. 6–15. isbn: 3-540-26551-1 (cit. on p. 14).

Placeway, P., S. Chen, M. Eskenazi, U. Jain, V. Parikh, B. Raj, M. Ravishankar, R.
Rosenfeld, K. Seymore, M. Siegler, R. Stern, and E.�ayer (1997). “�e 1996 hub-4
sphinx-3 system”. In: Proc. DARPA Speech recognition workshop, pp. 85–89 (cit. on
p. 103).

Poesio, Massimo andHannes Rieser (July 2004). Completions and continuations in
dialogue: a preliminary account. Ed. by Jonathan Ginzburg and Enric Vallduví.
Invited lecture at Catalog, �e 8th Workshop on the Semantics and Pragmatics

235

http://dx.doi.org/10.1109/MSP.2004.1328092
http://dx.doi.org/10.1109/TSE.1979.234169

Bibliography

of Dialogue. url: http://www.upf.edu/dtf/personal/enricvallduvi/catalog04/
invabst/catalog04poesio.ppt (cit. on p. 151).

Poesio, Massimo and Hannes Rieser (Feb. 2010). “Completions, coordination, and
alignment in dialogue”. In: Dialogue and Discourse 1.1, pp. 1–89. doi: 10.5087/dad.
2010.001 (cit. on p. 151).

Poncin, Kristina and Hannes Rieser (2006). “Multi-speaker utterances and co-ordina-
tion in task-oriented dialogue”. In: Journal of Pragmatics 38.5, pp. 718–744 (cit. on
p. 151).

Postel, J. and J. Reynolds (Oct. 1985). File Transfer Protocol. RFC 959 (INTERNET
STANDARD). Updated by RFCs 2228, 2640, 2773, 3659, 5797. Internet Engineering
Task Force. url: http://www.ietf.org/rfc/rfc959.txt (cit. on p. 32).

Proceedings of DECALOG, the 11th International Workshop on the Semantics and
Pragmatics of Dialogue (June 2007). Trento, Italy.

Purver, Matthew, Arash Eshghi, and Julian Hough (Jan. 2011). “Incremental Semantic
Construction in a Dialogue System”. In: Proceedings of the 9th International Con-
ference on Computational Semantics (IWCS). ACL. Oxford, UK: Association for
Computational Linguistics (cit. on p. 152).

Purver, Matthew, Florin Ratiu, and Lawrence Cavedon (2006). “Robust Interpretation
in Dialogue by Combining Con�dence Scores with Contextual Features”. In: Proc.
of Interspeech. Pittsburgh, USA (cit. on pp. 102, 117).

Purver, Matthew, Christine Howes, Patrick G. T. Healey, and Eleni Gregoromichelaki
(Sept. 2009). “Split Utterances in Dialogue: a Corpus Study”. In: Proceedings of
SIGdial. London, UK, pp. 262–271 (cit. on pp. 150, 151).

Pétursson, Magnús and Joachim Neppert (1996). Elementarbuch der Phonetik. 2nd ed.
Hamburg, Germany: Buske (cit. on pp. 28, 94).

Quené, Hugo (2007). “On the just noticeable di�erence for tempo in speech”. In:
Journal of Phonetics 35.3, pp. 353 –362. issn: 0095-4470. doi: 10.1016/j.wocn.
2006.09.001 (cit. on p. 213).

Rabiner, Lawrence R. and Biing-Hwang Juang (1993). Fundamentals of Speech Recog-
nition. Upper Saddle River, NJ, USA: Prentice Hall PTR (cit. on pp. 89, 97, 98).

Ramalingam, Ganesan and �omas Reps (1993). “A categorized bibliography on
incremental computation”. In: Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, pp. 502–510 (cit. on
p. 51).

Rashid, Rick (Oct. 25, 2012). “Microso� Research and the Evolution of Comput-
ing”. In: Computing in the 21st Century. Computing, Naturally. Keynote Address.
Microso� Research Asia. Tianjin, China. url: http://v.youku.com/v_show/id_
XNDc1NDAyMTcy.html?f=18558089. Video recording (cit. on p. 149).

236

http://www.upf.edu/dtf/personal/enricvallduvi/catalog04/invabst/catalog04-poesio.ppt
http://www.upf.edu/dtf/personal/enricvallduvi/catalog04/invabst/catalog04-poesio.ppt
http://dx.doi.org/10.5087/dad.2010.001
http://dx.doi.org/10.5087/dad.2010.001
http://www.ietf.org/rfc/rfc959.txt
http://dx.doi.org/10.1016/j.wocn.2006.09.001
http://dx.doi.org/10.1016/j.wocn.2006.09.001
http://v.youku.com/v_show/id_XNDc1NDAyMTcy.html?f=18558089
http://v.youku.com/v_show/id_XNDc1NDAyMTcy.html?f=18558089

Bibliography

Raux, A., B. Langner, A. Black, and M. Eskenazi (2003). “LET’S GO: Improving
Spoken Dialog Systems for the Elderly and Non-natives”. In: Proc. of Eurospeech.
Geneva, Switzerland (cit. on p. 41).

Raux, Antoine and Maxine Eskenazi (2008). “Optimizing Endpointing�resholds
using Dialogue Features in a Spoken Dialogue System”. In: Proceedings of the 9th
SIGdial Workshop on Discourse and Dialogue. Columbus, Ohio: Association for
Computational Linguistics, pp. 1–10. url: http://www.aclweb.org/anthology/W/
W08/W080101 (cit. on pp. 140, 147).

– (2009). “A �nite-state turn-taking model for spoken dialog systems”. In: Proceed-
ings of Human Language Technologies:�e 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, pp. 629–637 (cit. on pp. 41, 139, 147, 148).

Rayner, Manny, D Carter, V Digalais, and P Price (1994). “Combining knowledge
sources to reorder n-best speech hypothesis lists”. In: Proc. of the ARPA Human
Language Technology Workshop. Plainsboro, USA (cit. on p. 102).

Razik, Joseph, Odile Mella, Dominique Fohr, and Jean-PaulHaton (2008). “Frame-
synchronous and local con�dence measures for on-the-�y automatic speech recog-
nition”. In: Proceedings of Interspeech, pp. 1517–1520 (cit. on pp. 102, 136).

– (2011). “Frame-synchronous and Local Con�dence Measures for Automatic Speech
Recognition”. In: International Journal of Pattern Recognition and Arti�cial Intelli-
gence 25.2, pp. 157–182. issn: 0218-0014. doi: 10.1142/S0218001411008543 (cit. on
pp. 102, 136).

Reddy, D., L. Erman, R. Fennell, and R. Neely (1976). “�eHearsay-I Speech Under-
standing System: An Example of the Recognition Process”. In: IEEE Transactions
on Computers C-25.4, pp. 422–431 (cit. on p. 47).

Reiter, Ehud and Anja Belz (2009). “An Investigation into the Validity of Some
Metrics for Automatically Evaluating Natural Language Generation Systems”. In:
Computational Linguistics 35.4, pp. 529–558 (cit. on p. 66).

Reiter, Ehud and Somayajulu Sripada (2002). “Human Variation and Lexical Choice”.
In: Computational Linguistics 28, pp. 545–553 (cit. on p. 202).

Roy, Nicholas, Joelle Pineau, and Sebastian�run (2000). “Spoken dialogue manage-
ment using probabilistic reasoning”. In: Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics. Association for Computational Linguis-
tics, pp. 93–100 (cit. on p. 221).

Rudnicky, A., E.�ayer, P. Constantinides, C. Tchou, R. Stern, K. Lenzo, W. Xu, and
A. Oh (1999). “Creating Natural Dialogs in the Carnegie Mellon Communicator
System”. In: Proc. of Eurospeech. Budapest, Hungary (cit. on p. 41).

Sacks, Harvey and Emanuel A. Scheglo� (1979). “Two Preferences in the Organiza-
tion of Reference to Persons in Conversation and�eir Interaction”. In: Everyday

237

http://www.aclweb.org/anthology/W/W08/W08-0101
http://www.aclweb.org/anthology/W/W08/W08-0101
http://dx.doi.org/10.1142/S0218001411008543

Bibliography

Language: Studies in Ethnomethodology. Ed. by George Psathas. New York, USA:
Irvington Publishers, Inc., pp. 15–21 (cit. on p. 143).

Sacks,Harvey, Emanuel A. Scheglo�, and Gail A. Je�erson (1974). “A Simplest Sys-
tematic for the Organization of Turn-Taking in Conversation”. In: Language 50,
pp. 735–996 (cit. on pp. 31, 32, 150).

Sagae, Kenji, David DeVault, and David Traum (2010). “Interpretation of partial
utterances in virtual human dialogue systems”. In: Proceedings of the NAACL HLT
2010 Demonstration Session. Association for Computational Linguistics, pp. 33–36
(cit. on p. 152).

Sagae, Kenji, Gwen Christian, David DeVault, and David Traum (2009). “Towards
Natural Language Understanding of Partial Speech Recognition Results in Dia-
logue Systems”. In: Proceedings of Human Language Technologies: �e 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, Companion Volume: Short Papers. Association for Computational Lin-
guistics, pp. 53–56 (cit. on pp. 17, 42, 48, 64, 152).

Scheglo�, Emanuel A (1968). “Sequencing in Conversational Openings”. In:American
Anthropologist. New Series 70.6 (cit. on p. 31).

– (2000). “Overlapping talk and the organization of turn-taking for conversation”.
In: Language in society 29.1, pp. 1–63 (cit. on p. 174).

Schlangen, David (Sept. 2006). “From Reaction to Prediction: Experiments with Com-
putational Models of Turn-Taking”. In: Proceedings of Interspeech 2006. Pittsburgh,
USA (cit. on pp. 139, 148).

Schlangen, David, Timo Baumann, and Michaela Atterer (2009). “Incremental Refer-
ence Resolution: �e Task, Metrics for Evaluation, and a Bayesian Filtering Model
that is Sensitive to Dis�uencies”. In: Proceedings of SigDial 2009. London, UK (cit.
on pp. 17, 49, 64, 69).

Schlangen, David and Raquel Fernández (2007). “Speaking through a noisy channel:
Experiments on inducing clari�cation behaviour in human-human dialogue”. In:
Proceedings of Interspeech 2007 (cit. on p. 135).

Schlangen, David and Hannes Rieser, eds. (2011). Dialogue & Discourse 2.1. Special
Issue on Incremental Processing in Dialogue. issn: 2152-9620 (cit. on p. 16).

Schlangen, David and Gabriel Skantze (2009). “A General, Abstract Model of Incre-
mental Dialogue Processing”. In: Proceedings of the EACL. Athens, Greece, pp. 710–
718 (cit. on pp. 42, 44, 48, 49, 54, 74, 80).

– (2011). “A General, Abstract Model of Incremental Processing”. In: Dialogue and
Discourse 2.1, pp. 83–111 (cit. on pp. 44, 54, 74–76, 81).

Schlangen, David, Timo Baumann, Hendrik Buschmeier, Okko Buß, Stefan Kopp,
Gabriel Skantze, and Ramin Yaghoubzadeh (Sept. 2010). “Middleware for Incre-
mental Processing in Conversational Agents”. In: Proceedings of SigDial 2010. Tokyo,
Japan (cit. on pp. 20, 83, 84).

238

Bibliography

Schröder, Marc (2004). “Dimensional emotion representation as a basis for speech
synthesis with non-extreme emotions”. In: Proc. Workshop on A�ective Dialogue
Systems, pp. 209–220 (cit. on p. 216).

Schröder, Marc and Stefan Breuer (2004). “XML Representation Languages as a Way
of Interconnecting TTS Modules”. In: Proceedings of ICSLP (cit. on pp. 156, 184).

Schröder, Marc and Jürgen Trouvain (Oct. 2003). “�e German Text-to-Speech Syn-
thesis System MARY: A Tool for Research, Development and Teaching”. In: In-
ternational Journal of Speech Technology 6.3, pp. 365–377. issn: 1572-8110. doi:
10.1023/A:1025708916924 (cit. on pp. 85, 156, 166, 184).

Schulzrinne, H., S. Casner, R. Frederick, andV. Jacobson (July 2003).RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Standard). url: http://www.ietf.
org/rfc/rfc3550.txt (cit. on p. 85).

Selfridge, Ethan, Iker Arizmendi, Peter Heeman, and Jason Williams (June 2011).
“Stability and Accuracy in Incremental Speech Recognition”. In: Proceedings of
the SIGDIAL 2011 Conference. Portland, Oregon: Association for Computational
Linguistics, pp. 110–119. url: http://www.aclweb.org/anthology/W/W11/W112014
(cit. on pp. 41, 53, 67, 104, 117).

– (2012a). “A Temporal Simulator for Developing Turn-Taking Methods for Spoken
Dialogue Systems”. In: Proceedings of SigDial. Seoul, Korea (cit. on p. 135).

Selfridge, Ethan, Peter Heeman, Iker Arizmendi, and Jason D. Williams (Dec. 2012b).
“Demonstrating the Incremental Interaction Manager in an end-to-end "Lets Go!"
dialogue system”. In: IEEE Workshop on Spoken Language Technology. System
Demonstration. Miami, USA (cit. on p. 41).

Selfridge, Ethan, Iker Arizmendi, Peter A. Heeman, and Jason D. Williams (2012c).
“Integrating Incremental Speech Recognition and POMDP-based Dialogue Sys-
tems”. In: Proceedings of SIGdial 2012. Seoul, Korea (cit. on pp. 41, 221).

Sene�, S., E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue (1998). “Galaxy II: A
Reference Architecture for Conversational System Development”. In: Proceedings
of ICSLP. Sydney, Australia (cit. on p. 41).

Serébrennikov, A collective of authors led by Boris Aleksandrovich Serébrennikov
(1975). Allgemeine Sprachwissenscha�. Ed. by Hans Zikmund and Günther Feudel.
Vol. II. Akademie-Verlag Berlin (cit. on pp. 25–27).

Seward, Alexander (2003). “Low-latency incremental speech transcription in the syn-
face project”. In: Proceedings of the European Conference on Speech Communication
and Technology (Eurospeech), Geneva, Switzerland, 2003: vol 2, pp. 1141–1144 (cit. on
p. 104).

Shannon, Claude E. and Warren Weaver, eds. (1949). �e Mathematical �eory of
Communication. Paperback edition, September 1969. �e University of illinois
Press (cit. on pp. 23, 24).

239

http://dx.doi.org/10.1023/A:1025708916924
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.aclweb.org/anthology/W/W11/W11-2014

Bibliography

Shannon, Claude (1949). “�e Mathematical �eory of Communication”. In: �e
Mathematical �eory of Communication. Paperback edition, September 1969; re-
printed from the Bell System Technical Journal, July and October 1948.�e Uni-
versity of illionois Press, pp. 29–125 (cit. on p. 23).

Sharabi, Moshe and Moshe Davidow (2010). “Service quality implementation: Prob-
lems and solutions”. In: International Journal of Quality and Service Sciences 2 (2),
pp. 189–205. doi: 10.1108/17566691011057357 (cit. on p. 14).

Silverman, K., M. Beckman, J. Pitrelli, M. Ostendorf, C. Wightman, P. Price, J. Pierre-
humbert, and J.Hirschberg (1992). “ToBI: A standard for labeling English prosody”.
In: Second International Conference on Spoken Language Processing (cit. on p. 179).

Singh, Rita (2004). “Sphinx”. In: Berkshire Encyclopedia of Human-Computer Interac-
tion: When Science Fiction Becomes Science Fact. Ed. by William Sims Bainbridge.
Vol. 2. Berkshire Publishing, pp. 694–695 (cit. on p. 103).

Sjölander, K. and J. Beskow (2000). “Wavesurfer-an open source speech tool”. In:
Proceedings of ICSLP. Vol. 4, pp. 464–467 (cit. on p. 107).

Skantze, Gabriel (2007). “Error Handling in Spoken Dialogue Systems”. PhD thesis.
Stockholm, Sweden: KTH (cit. on p. 42).

– (2008). “Galatea: A Discourse Modeller Supporting Concept-Level Error Handling
in Spoken Dialogue Systems”. In: Recent Trends in Discourse and Dialogue. Ed. by
Laila Dybkjær and Wolfgang Minker. Vol. 39. Text, Speech and Language Technol-
ogy. Springer Netherlands, pp. 155–189. isbn: 978-1-4020-6820-1. doi: 10.1007/978
1402068218_7 (cit. on p. 221).

– (2010). Jindigo: a Java-based Framework for Incremental Dialogue Systems. Tech. rep.
Stockholm, Sweden: KTH. url: http://www.speech.kth.se/prod/publications/
files/3654.pdf (cit. on pp. 42, 84).

Skantze, Gabriel and Anna Hjalmarsson (Sept. 2010). “Towards Incremental Speech
Generation in Dialogue Systems”. In: Proceedings of SIGdial. Tokyo, Japan (cit. on
pp. 175, 188, 192, 210).

Skantze, Gabriel and David Schlangen (Apr. 2009). “Incremental Dialogue Processing
in a Micro-Domain”. In: Proceedings of EACL 2009. Athens, Greece (cit. on pp. 19,
42, 73, 143, 145–148).

Skovenborg, Esben and Søren H Nielsen (2004). “Evaluation of di�erent loudness
models withmusic and speechmaterial”. In: Proceedings of the 117th AES convention,
San Francisco (cit. on p. 85).

Skuplik, Kristina (1999). Satzkooperationen. De�nition und empirische Untersuchung.
Tech. rep. 1999/03. Bielefeld, Germany: SFB 360, Universität Bielefeld (cit. on p. 151).

Soeda, Shunsuke and Nigel Ward (2001). “Design for a System able to use Time-
Critical Spoken Advice”. In: Proceedings of the 15th Annual Conference of JSAI.
Matsue, Japan (cit. on p. 135).

240

http://dx.doi.org/10.1108/17566691011057357
http://dx.doi.org/10.1007/978-1-4020-6821-8_7
http://dx.doi.org/10.1007/978-1-4020-6821-8_7
http://www.speech.kth.se/prod/publications/files/3654.pdf
http://www.speech.kth.se/prod/publications/files/3654.pdf

Bibliography

Stone, Matthew, Christine Doran, Bonnie Webber, Tonia Bleam, and Martha Palmer
(2003). “Microplanning with Communicative Intentions: �e SPUD System”. In:
Computational Intelligence 19, pp. 311–381 (cit. on pp. 35, 201).

Swadesh, Morris (1937). “�e Phonemic Interpretation of Long Consonants”. In:
Language 13.1, pp. 1–10 (cit. on p. 27).

Tanenbaum, A.S. (1981). “Network protocols”. In: ACM Computing Surveys (CSUR)
13.4, pp. 453–489 (cit. on p. 25).

Tanenhaus, Michael K., M.J. Spivey-Knowlton, K.M. Eberhard, and J.C. Sedivy (1995).
“Integration of visual and linguistic information in spoken language comprehen-
sion”. In: Science 268.5217, pp. 1632–1634 (cit. on p. 15).

Taylor, Martin and David Waugh (2000). “Dialogue analysis using layered protocols”.
In: Abduction, Belief and Context in Dialogue. Studies in Computational Pragmat-
ics. Ed. by Harry Bunt and William Black. Natural Language Processing. John
Benjamins, pp. 189–231 (cit. on pp. 28, 29).

Taylor, Maurice Martin (1988). “Layered protocols for computer-human dialogue. I:
Principles”. In: International Journal of Man-Machine Studies 28.2-3, pp. 175 –218.
issn: 0020-7373. doi: 10.1016/S00207373(88)800361 (cit. on p. 28).

Taylor, P. A. (2000). “Concept-to-Speech Synthesis by Phonological Structure Match-
ing”. English. In:Philosophical Transactions:Mathematical, Physical and Engineering
Sciences 358.1769, pp. 1403–1417. issn: 1364503X. url: http://www.jstor.org/
stable/2666826 (cit. on p. 178).

Taylor, Paul (2009). Text-to-Speech Synthesis. Cambridge Univ Press. isbn: 978-
0521899277 (cit. on pp. 89, 94–96, 178, 179, 181).

Ternes, Elmar (1999). Einführung in die Phonologie. 2nd ed.Wissenscha�liche Buchge-
sellscha�. isbn: 978-3534138708 (cit. on p. 94).

�eune, M., K. Meijs, D. Heylen, and R. Ordelman (2006). “Generating expressive
speech for storytelling applications”. In: Audio, Speech, and Language Processing,
IEEE Transactions on 14.4, pp. 1137–1144 (cit. on p. 161).

�órisson, Kristinn R. (1997). “Gandalf: an embodied humanoid capable of real-
time multimodal dialogue with people”. In: Proceedings of the �rst international
conference on Autonomous agents. AGENTS ’97. Marina del Rey, California, USA:
ACM, pp. 536–537. isbn: 0-89791-877-0. doi: 10.1145/267658.267823 (cit. on p. 42).

�órisson, Kristinn R. (2008). “Modeling Multimodal Communication as a Complex
System”. In:Modeling Communication with Robots and Virtual Humans. Ed. by
Ipke Wachsmuth and Günther Knoblich. Vol. 4930. Lecture Notes in Computer
Science. Springer BerlinHeidelberg, pp. 143–168. isbn: 978-3-540-79036-5. doi:
10.1007/9783540790372_8 (cit. on p. 44).

�órisson, Kristinn R. and Gudny Ragna Jonsdottir (2008). “A Granular Architecture
for Dynamic Realtime Dialogue”. In: Intelligent Virtual Agents. Ed. by Helmut
Prendinger, James Lester, and Mitsuru Ishizuka. Vol. 5208. Lecture Notes in Com-

241

http://dx.doi.org/10.1016/S0020-7373(88)80036-1
http://www.jstor.org/stable/2666826
http://www.jstor.org/stable/2666826
http://dx.doi.org/10.1145/267658.267823
http://dx.doi.org/10.1007/978-3-540-79037-2_8

Bibliography

puter Science. Springer Berlin Heidelberg, pp. 131–138. isbn: 978-3-540-85482-1.
doi: 10.1007/9783540854838_13 (cit. on pp. 42, 44).

�órisson, Kristinn R., Olafur Gislason, Gudny Ragna Jonsdottir, and Hrafn �.
�órisson (2010). “A Multiparty Multimodal Architecture for Realtime Turntak-
ing”. In: Intelligent Virtual Agents. Ed. by Jan Allbeck, Norman Badler, Timothy
Bickmore, Catherine Pelachaud, and Alla Safonova. Vol. 6356. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 350–356. isbn: 978-3-642-15891-
9. doi: 10.1007/9783642158926_37 (cit. on p. 44).

Toda, Tomoki and Keiichi Tokuda (2007). “A speech parameter generation algo-
rithm considering global variance for HMM-based speech synthesis”. In: IEICE
transactions on information and systems 90.5, pp. 816–824 (cit. on p. 181).

Tokuda, Keiichi, Takayoshi Yoshimura, Takashi Masuko, Takao Kobayashi, and Tada-
shi Kitamura (2000). “Speech Parameter Generation Algorithms for HMM-based
Speech Synthesis”. In: Proceedings of ICASSP (cit. on p. 181).

Visser,�omas, David Traum, David DeVault, and Rieks op den Akker (Sept. 2012).
“Toward a Model for Incremental Grounding in Spoken Dialogue Systems”. In:
Workshop on Real-Time Conversations with Virtual Agents (RCVA 2012). Santa
Cruz, USA (cit. on p. 42).

Vogt, F., O. Guenther, A. Hannam, K. van den Doel, J. Lloyd, L. Vilhan, R. Chander,
J. Lam, C. Wilson, K. Tait, et al. (2005). “ArtiSynth designing a modular 3D articu-
latory speech synthesizer”. In:�e Journal of the Acoustical Society of America 117,
p. 2542 (cit. on p. 183).

Wachsmuth, Sven, Gernot A. Fink, and Gerhard Sagerer (Sept. 1998). “Integration of
Parsing and Incremental Speech Recognition”. In: Proc. European Signal Processing
Conference. Vol. 1. Rhodes, pp. 371–375 (cit. on pp. 48, 53, 104, 122, 123, 136).

Walker, Marilyn A., Diane J. Litman, Candace A. Kamm, and Alicia Abella (1998).
“Evaluating spoken dialogue agents with PARADISE: Two case studies”. In: Com-
puter Speech and Language 12.3 (cit. on p. 145).

Walker, Willie, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea,
PeterWolf, and JoeWoelfel (2004). Sphinx-4: A Flexible Open Source Framework for
Speech Recognition. Tech. rep. SMLI TR2004-0811. Sun Microsystems Inc. (cit. on
p. 85).

Ward, Nigel G., Alejandro Vega, and Timo Baumann (2012). “Prosodic and Temporal
Features for Language Modeling for Dialog”. In: Speech Communication 54.2,
pp. 161–174. issn: 0167-6393. doi: 10.1016/j.specom.2011.07.009 (cit. on p. 103).

Ward, Nigel G., Anais G. Rivera, Karen Ward, and David G. Novick (2005). “Root
causes of lost time and user stress in a simple dialog system”. In: INTERSPEECH
2005 - Eurospeech, 9th European Conference on Speech Communication and Tech-
nology, Lisbon, Portugal, September 4-8, 2005. ISCA, pp. 1565–1568. doi: http:

242

http://dx.doi.org/10.1007/978-3-540-85483-8_13
http://dx.doi.org/10.1007/978-3-642-15892-6_37
http://dx.doi.org/10.1016/j.specom.2011.07.009
http://dx.doi.org/http://www.isca-speech.org/archive/interspeech_2005/i05_1565.html
http://dx.doi.org/http://www.isca-speech.org/archive/interspeech_2005/i05_1565.html

Bibliography

//www.iscaspeech.org/archive/interspeech_2005/i05_1565.html (cit. on pp. 15,
45).

Ward, Nigel (2006). “Non-lexical conversational sounds in American English”. In:
Pragmatics & Cognition 14.1, pp. 129–182. issn: 1569-9943. doi: doi:10.1075/pc.
14.1.08war (cit. on p. 32).

Ward, Nigel, Olac Fuentes, and Alejandro Vega (Sept. 2010). “Dialog Prediction for a
General Model of Turn-Taking”. In: Proceedings of Interspeech. Tokyo, Japan (cit. on
pp. 139, 147, 148).

Weaver, Warren (1949). “Recent Contributions to the Mathematical�eory of Com-
munication”. In:�eMathematical �eory of Communication. paperback edition,
September 1969.�e University of illionois Press, pp. 1–28 (cit. on pp. 23, 24).

Weilhammer, Karl and Susen Rabold (2003). “Durational Aspects in Turn Taking”. In:
Proceedings of the 15th International Congress of Phonetic Sciences. Barcelona, Spain.
url: http://www.phonetik.unimuenchen.de/Publications/WeilhammerRabold
03ICPhS.pdf (cit. on p. 148).

Welbergen,Herwin van (2011). “Behavior Generation for Interpersonal Coordination
with Virtual Humans”. PhD thesis. University of Twente (cit. on p. 176).

Wesseling, W., R.J.J.H. Son, and L.C.W. Pols (2006). “On the Su�ciency and Redun-
dancy of Pitch for TRP Projection”. In: Ninth International Conference on Spoken
Language Processing. ISCA (cit. on p. 29).

Williams, Jason D. (2008). “Exploiting the ASR N-Best by tracking multiple dialog
state hypotheses”. In: Proceedings of Interspeech. Brisbane, Australia, pp. 191–194
(cit. on pp. 102, 117).

Wilson, Margaret and�omas P. Wilson (2005). “An oscillator model of the timing of
turn-taking”. In: Psychonomic Bulletin & Review 12.6, pp. 957–968. issn: 1531-5320.
doi: 10.3758/BF03206432 (cit. on p. 168).

Wirén,Mats (1992). “Studies in Incremental Natural LanguageAnalysis”. Unpublished
doctoral dissertation. Sweden: Linkoping University (cit. on p. 59).

Xing, Zhengzheng, Jian Pei, and Philip Yu (2009). “Early Prediction on Time Series: A
Nearest Neighbor Approach”. In: Proceedings of the International Joint Conference
on Arti�cial Intelligence. Pasadena, USA, pp. 1297–1302 (cit. on p. 136).

Yngve, Victor H (1970). “On getting a word in edgewise”. In: Chicago Linguistics
Society, 6th Meeting, pp. 567–578 (cit. on p. 32).

Yoshimura, Takayoshi, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, and Tada-
shi Kitamura (1998). “Duration Modeling for HMM-based Speech Synthesis”. In:
Proceedings of the 5th International Conference on Spoken Language Processing (cit.
on p. 156).

Young, Steve J., NH Russell, and JHS �ornton (1989). Token Passing: A Simple
Conceptual Model for Connected Speech Recognition Systems. Tech. rep. CUED/F-
INFENG/TR. Cambridge University Engineering Department (cit. on pp. 47, 100).

243

http://dx.doi.org/http://www.isca-speech.org/archive/interspeech_2005/i05_1565.html
http://dx.doi.org/http://www.isca-speech.org/archive/interspeech_2005/i05_1565.html
http://dx.doi.org/doi:10.1075/pc.14.1.08war
http://dx.doi.org/doi:10.1075/pc.14.1.08war
http://www.phonetik.uni-muenchen.de/Publications/WeilhammerRabold-03-ICPhS.pdf
http://www.phonetik.uni-muenchen.de/Publications/WeilhammerRabold-03-ICPhS.pdf
http://dx.doi.org/10.3758/BF03206432

Bibliography

Zemack, Matti (2007). “Implementing methods for equal loudness in radio broad-
casting”. Master’s thesis. Stockholm, Sweden: Skolan för datavetenskap och kom-
munikation. Kungliga tekniska högskolan (cit. on p. 85).

Zen, Heiga, Keiichi Tokuda, TakashiMasuko, Takao Kobayashi, and Tadashi Kitamura
(2007a). “A Hidden Semi-Markov Model-Based Speech Synthesis System”. In:
IEICE Transactions on Information and Systems 90.5, pp. 825–834. issn: 1745-1361
(cit. on p. 181).

Zen, Heiga, Tomoki Toda, Masaru Nakamura, and Keiichi Tokuda (2007b). “Details
of the Nitech HMM-based speech synthesis system for the Blizzard Challenge
2005”. In: IEICE Transactions on Information and Systems 90.1, pp. 325–333. issn:
1745-1361 (cit. on p. 182).

Zilberstein, Shlomo (1996). “Using Anytime Algorithms in Intelligent Systems”. In:
AI magazine 17.3, p. 73 (cit. on pp. 49, 52).

Zimmermann, H. (1980). “OSI reference model–�e ISO model of architecture for
open systems interconnection”. In: IEEE Transactions on Communications 28.4,
pp. 425–432 (cit. on p. 25).

244

	Kurzfassung
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Thesis Outline
	Contributions
	Previously Published and Co-authored Material

	Spoken Dialogue and Spoken Dialogue Systems
	Modelling Dialogue
	The Shannon-Weaver Model of Communication
	Layers of Communication
	Emergence of Behaviour in Complex Systems
	Establishing Common Ground
	Taking Turns
	Feedback and the Backward Channel

	Components and Architecture for Spoken Dialogue Systems
	Components of Spoken Dialogue Systems
	Interconnection of Components
	Discussion

	State of the Art in Spoken Dialogue Systems
	Commercial, Standards-based Systems
	Related Research Systems
	Advanced Commercial Systems

	Summary and Discussion

	Incremental Processing and its Evaluation
	Timeliness and Incrementality
	Aspects of Incrementality
	Related Work on Evaluating Incremental Processing
	Relation to Anytime Processing

	Our Notion of Incremental Processing
	Incremental Processors
	Representing Incremental Data

	Evaluation of Incremental Processors
	Gold Standards for Evaluation
	Evaluation with Incremental Gold Standards
	Evaluation with Non-Incremental Gold Standards

	Metrics for Evaluation of Incremental Processors
	Similarity Metrics
	Timing Metrics
	Diachronic Metrics
	Interrelations between Metrics

	Summary

	A Software Architecture for Incremental Spoken Dialogue Processing
	The Data Model: Incremental Units
	The IU Network
	Triangular Data Models

	The Processing Model
	Incremental Modules and Inter-Module Communication
	Alternative Processing Schemes

	Infrastructure
	Discussion

	Incremental Speech Recognition
	Automatic Speech Recognition in a Nutshell
	Modelling Speech Data
	The Language Model
	The Pronunciation Model
	Acoustic Modelling in the ASR Frontend

	The Speech Recognizer
	Hidden Markov Models
	The Decoding Algorithm

	Evaluating Speech Recognition
	Refinements
	The Sphinx-4 Speech Recognizer

	Incrementalizing Speech Recognition
	The InproTK Module for Incremental Rich Speech Recognition

	INTELIDA: A Workbench for Evaluating iSR
	The Library
	Interactive Tools

	Evaluation of Basic Incremental Speech Recognition
	Variations of the Setup and Stability of Results
	N-Best Processing

	Optimization of Incremental Speech Recognition
	Right Context
	Hypothesis Smoothing
	Advanced Smoothing Methods

	Example Application: Incremental Command-and-Control
	The Greifarm Domain
	Cost-based Smoothing
	Wizard-of-Oz Experiment
	System Implementation
	Evaluation

	Summary and Discussion

	Short-Term Estimation of Dialogue Flow
	Floor Tracking in INPROTK
	Architecture and Implementation
	Example Application: Collaborating on Utterances
	Domain and Setup
	Experiment and Results

	Discussion

	Micro-Timing Prediction
	Motivation for the Task
	Related Work on Simultaneous Speech
	System Architecture
	Two Models for Micro-Timing
	Evaluation
	Corpus and Experiment Setup
	End-of-Word Prediction: When to Start Speaking
	Predicting the Micro-Timing of the Upcoming Word
	Estimating the Reliability of the Predictions
	Summary

	Example Application: Speaking in Synchrony With the User
	Discussion

	Summary and Discussion

	Incremental Speech Synthesis
	Rationale for Incremental Speech Synthesis
	Related Work
	Requirements

	Speech Synthesis in a Nutshell
	Text-based Linguistic Processing
	HMM-based Waveform Synthesis
	Parameter Estimation with HMMs
	Vocoding

	Discussion of Alternative Synthesis Techniques
	Evaluation of Speech Synthesis
	MaryTTS

	Incrementalizing Speech Synthesis
	Incremental Speech Synthesis in INPROTK
	Utterance Tree-based iSS
	An Incremental Module for Speech Synthesis
	Very Low-Latency Prosody Adaptation
	Automatic Hesitation

	Conformance to the Requirements

	The Merit of iSS
	Domain and System
	Evaluation
	Results
	Discussion

	Example Application: Integration with Incremental NLG
	Use-Case: Adaptive Information Presentation
	Implemented System
	Evaluation
	System Response Time
	Subjective Evaluation

	Discussion

	Evaluating the Prosodic Quality of iSS
	The Design Space for Incremental Prosody Production
	Experiment
	Evaluation
	Qualitative Analysis
	Quantitative Evaluation

	Conclusion

	Summary and Discussion

	Conclusion and Outlook
	Summary
	Conclusion
	Open Questions

	Bibliography

